0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLD1125ELXUMA1

TLD1125ELXUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SSOP14_150MIL_EP

  • 描述:

    LED 驱动器 IC 1 输出 线性 PWM 调光 360mA SSOP14_150MIL_EP

  • 数据手册
  • 价格&库存
TLD1125ELXUMA1 数据手册
LITIX™ Basic TLD1125EL 1 Channel High-Side Current Source 1 Package PG-SSOP-14 Marking TLD1125 Overview Applications • Exterior LED lighting applications such as tail/brake light, turn indicator, position light, side marker,... • Interior LED lighting applications such as ambient lighting, interior illumination and dash board lighting. GND 4.7nF** ISO-Pulse protection circuit depending on requirements VS CVS =4.7nF BRAKE 10kΩ Cmod =2.2µF TAIL EN PWMI Internal supply Thermal protection Output control Current adjustment Status OUT * In case PWM via VS is performed ** For EMI improvement if required GND CST =100pF** 470kΩ* RSET CD TLD1125EL ST IN_SET RPWMI CPWMI D to other LITIX™ Basic Application Diagram with TLD1125EL Data Sheet www.infineon.com Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL Overview Basic Features • 1 Channel device with integrated output stage (current source), optimized to drive LEDs with output current up to 360 mA • Low current consumption in sleep mode • PWM-operation supported via VS- and EN-pin • Integrated PWM dimming engine to provide two LED brightness levels without external logic (e.g. µC) • Output current adjustable via external low power resistor and possibility to connect PTC resistor for LED protection during over temperature conditions • Reverse polarity protection and overload protection • Undervoltage detection • Open load and short circuit to GND diagnosis • Wide temperature range: -40°C < Tj < 150°C • PG-SSOP-14 package with exposed heatslug Description The LITIX™ Basic TLD1125EL is a one channel high side driver IC with integrated output stage. It is designed to control LEDs with a current up to 360 mA. In typical automotive applications the device is capable to drive i.e. 3 red LEDs with a current up to 180 mA, which is limited by thermal cooling aspects. The output current is controlled practically independent of load and supply voltage changes. Table 1 Product Summary Parameter Symbol Value Operating voltage range VS(nom) 5.5 V ... 40 V Maximum voltage VS(max) VOUT(max) 40 V Nominal output (load) current IOUT(nom) 180 mA when using a supply voltage range of 8 V - 18 V (e.g. Automotive car battery). Currents up to IOUT(max) possible in applications with low thermal resistance RthJA Maximum output (load) current IOUT(max) 360 mA; depending on thermal resistance RthJA Output current accuracy at RSET = 12 kΩ kLT 2250 ± 7% Current consumption in sleep mode IS(sleep,typ) 0.1 µA Protective Functions • ESD protection • Under voltage lock out • Over Load protection • Over Temperature protection • Reverse Polarity protection Diagnostic Functions • OL detection • SC to Vs (indicated by OL diagnosis) • SC to GND detection Data Sheet 2 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL Block Diagram Block Diagram VS 2 EN Internal supply Thermal protection Output control Current adjustment Status PWMI OUT TLD1125EL Figure 1 Data Sheet GND IN_SET ST D Basic Block Diagram 3 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL Pin Configuration 3 Pin Configuration 3.1 Pin Assignment Figure 2 Data Sheet VS 1 VS 2 EN 3 NC 4 PWMI 14 NC 13 NC 12 OUT 11 NC 5 10 ST IN_SET 6 9 GND D 7 8 NC TLD1125EL EP Pin Configuration 4 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL Pin Configuration 3.2 Pin Definitions and Functions Pin Symbol Input/ Output Function 1, 2 VS – Supply Voltage; battery supply, connect a decoupling capacitor (100 nF - 1 µF) to GND 3 EN I Enable pin 4 NC – Pin not connected 5 PWMI I/O PWM Input 6 IN_SET I/O Input / SET pin; Connect a low power resistor to adjust the output current 7 D I/O Delay for open load detection 8 NC – Pin not connected – 1) 9 GND 10 ST I/O Status pin 11 NC – Pin not connected 12 OUT O Output 13 NC – Pin not connected 14 NC – Pin not connected – 1) Exposed Pad GND Ground Exposed Pad; connect to GND in application 1) Connect all GND-pins together. Data Sheet 5 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Absolute Maximum Ratings 1) Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Conditions Min. Max. VS VEN VEN(VS) VEN - VOUT -16 40 V – -16 40 V – VS - 40 VS + 16 V – -16 40 V – VOUT VPS -1 40 V – -16 40 V – -0.3 6 V – -0.3 6 V – -0.3 6 V – -0.3 6 V – Voltages 4.1.1 Supply voltage 4.1.2 Input voltage EN 4.1.3 Input voltage EN related to VS 4.1.4 Input voltage EN related to VOUT VEN - VOUT 4.1.5 Output voltage 4.1.6 Power stage voltage VPS = VS - VOUT 4.1.9 D voltage 4.1.10 Status voltage VPWMI VIN_SET VD VST 4.1.11 IN_SET current IIN_SET – – 2 8 mA – Diagnosis output 4.1.12 D current -0.5 0.5 mA – 4.1.13 Output current ID IOUT – 390 mA – Tj Tstg -40 150 °C – -55 150 °C – 4.1.7 Input voltage PWMI 4.1.8 IN_SET voltage Currents Temperatures 4.1.14 Junction temperature 4.1.15 Storage temperature ESD Susceptibility 4.1.16 ESD resistivity to GND VESD -2 2 kV Human Body Model (100 pF via 1.5 kΩ)2) 4.1.17 ESD resistivity all pins to GND -500 500 V CDM3) 4.1.18 ESD resistivity corner pins to GND VESD VESD -750 750 V CDM3) 1) Not subject to production test, specified by design 2) ESD susceptibility, Human Body Model “HBM” according to ANSI/ESDA/JEDEC JS-001-2011 3) ESD susceptibility, Charged Device Model “CDM” according to JESD22-C101E Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 6 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL General Product Characteristics 4.2 Pos. Functional Range Parameter Symbol Limit Values Min. Max. Unit Conditions 4.2.19 Supply voltage range for normal operation VS(nom) 5.5 40 V – 4.2.20 Power on reset threshold VS(POR) – 5 V VEN = VS RSET = 12 kΩ IOUT = 80% IOUT(nom) VOUT = 2.5 V 4.2.21 Junction temperature Tj -40 150 °C – Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 4.3 Pos. Thermal Resistance Parameter 4.3.1 Junction to Case 4.3.2 Junction to Ambient 1s0p board 4.3.3 Junction to Ambient 2s2p board Symbol Limit Values RthJC RthJA1 Min. Typ. Max. – 8 10 – – RthJA2 – – 61 56 45 43 Unit Conditions K/W 1) 2) K/W 1) 3) K/W 1) 4) – – – – Ta = 85 °C Ta = 135 °C Ta = 85 °C Ta = 135 °C 1) Not subject to production test, specified by design. Based on simulation results. 2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed Pad are fixed to ambient temperature). Ta = 85°C, Total power dissipation 1.5 W. 3) The RthJA values are according to Jedec JESD51-3 at natural convection on 1s0p FR4 board. The product (chip + package) was simulated on a 76.2 x 114.3 x 1.5 mm3 board with 70 µm Cu, 300 mm2 cooling area. Total power dissipation 1.5 W distributed statically and homogenously over power stage. 4) The RthJA values are according to Jedec JESD51-5,-7 at natural convection on 2s2p FR4 board. The product (chip + package) was simulated on a 76.2 x 114.3 x 1.5 mm3 board with 2 inner copper layers (outside 2 x 70 µm Cu, inner 2 x 35 µm Cu). Where applicable, a thermal via array under the exposed pad contacted the first inner copper layer. Total power dissipation 1.5 W distributed statically and homogenously over power stage. Data Sheet 7 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL EN Pin 5 EN Pin The EN pin is a dual function pin: Internal Supply Output Control EN V EN Figure 3 Block Diagram EN pin Note: The current consumption at the EN-pin IEN needs to be added to the total device current consumption. The total current consumption is the sum of the currents at the VS-pin IS and the EN-pin IEN. 5.1 EN Function If the voltage at the pin EN is below a threshold of VEN(off) the LITIX™ Basic IC will enter Sleep mode. In this state all internal functions are switched off, the current consumption is reduced to IS(sleep). A voltage above VEN(on) at this pin enables the device after the Power on reset time tPOR. VS V EN IOU T t t tPOR 100% 80% t Figure 4 Data Sheet Power on reset 8 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL EN Pin 5.2 Internal Supply Pin The EN pin can be used to supply the internal logic. There are two typical application conditions, where this feature can be used: 1) In “DC/DC control Buck” configurations, where the voltage Vs can be below 5.5V. 2) In configurations, where a PWM signal is applied at the Vbatt pin of a light module. The buffer capacitor CBUF is used to supply the LITIX™ Basic IC during Vbatt low (Vs low) periods. This feature can be used to minimize the turn-on time to the values specified in Pos. 11.2.15. Otherwise, the power-on reset delay time tPOR (Pos. 6.3.8) has to be considered. The capacitor can be calculated using the following formula: I EN  LS  C BUF = tLOW  max   -------------------------------------------------V S – V D1 – V S  POR  (1) See also a typical application drawing in Chapter 12. VBATT VS D1 GND CBUF EN Internal supply Thermal protection OUT Current adjustment GND RSET IN_SET Output control LITIX™ Basic Figure 5 Data Sheet External circuit when applying a fast PWM signal on VBATT 9 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL EN Pin V EN t V BATT IOU T t tON (VS) 100% 80% Switch off behavior depends on V BATT and load characteristics 20% t Figure 6 Typical waveforms when applying a fast PWM signal on VBATT The parameter tON(VS) is defined at Pos. 11.2.15. The parameter tOFF(VS) depends on the load and supply voltage VBATT characteristics. 5.3 EN Unused In case of an unused EN pin, there are two different ways to connect it: 5.3.1 EN - Pull Up to VS The EN pin can be connected with a pull up resistor (e.g. 10 kΩ) to Vs potential. In this configuration the LITIX™ Basic IC is always enabled. 5.3.2 EN - Direct Connection to VS The EN pin can be connected directly to the VS pin (IC always enabled). This configuration has the advantage (compared to the configuration described in Chapter 5.3.1) that no additional external component is required. Data Sheet 10 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL PWMI Pin 6 PWMI Pin The PWMI pin is designed as a dual function pin. IPWMI(L) Output Control PWMI VPWMI Figure 7 Block Diagram PWMI pin The pin can be used for PWM-dimming via a push-pull stage of a micro controller, which is connecting the PWMI-pin to a low or high potential. Note: The micro controller’s push-pull stage has to able to sink currents according to Pos. 6.3.18 to activate the device. Furthermore, the device offers also an internal PWM unit by connecting an external-RC network according to Figure 10. 6.1 PWM Dimming A PWM signal can be applied at the PWMI pin for LED brightness regulation. The dimming frequency can be adjusted in a very wide range (e.g. 400 Hz). The PWMI pin is low active. Turn on/off thresholds VPWMI(L) and VPWMI(H) are specified in parameters Pos. 6.3.15 and Pos. 6.3.16. V PWMI IOU T tON (PWMI ) tOFF(PWMI ) t 100% 80% 20% t Figure 8 Data Sheet Turn on and Turn off time for PWMI pin usage 11 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL PWMI Pin 6.2 Internal PWM Unit Connecting a resistor and a capacitor in parallel on the PWMI pin enables the internal pulse width modulation unit. The following figure shows the charging and discharging defined by the RC-network according to Figure 10 and the internal PWM unit. VPWMI Outputs OFF VPWMI(H) Internal PWM VPWMI(L) Outputs ON t OUTON Figure 9 OUT - OFF OUTON OUT - OFF OUTON OUT - OFF OUTON OUT - OFF PWMI operating voltages The PWM Duty cycle (DC) and the PWM frequency can be adjusted using the formulas below. Please use only typical values of VPWMI(L), VPWMI(H) and IPWMI(on) for the calculation of tPWMI(on) and tPWMI(off) (as described in Pos. 6.3.15 to Pos. 6.3.18).  V PWMI  H  – I PWMI  on   R PWMI - t PWMI  on  = –R PWMI  C PWMI  LN  ------------------------------------------------------------------------------ V PWMI  L  – I PWMI  on   R PWMI  (2)  V PWMI  H  - t PWMI  off  = R PWMI  C PWMI  LN  ------------------------ V PWMI  L   (3) 1 f PWMI = --------------------------------------------------------t PWMI  on  + tPWMI  off  (4) DC = tPWMI  on   f PWMI (5) Out of this equations the required CPWMI and RPWMI can be calculated: t t  PWMI  off  PWMI  on  ------------------------  V PWMI  L  – I PWMI  on   t PWMI  off    --------------------------  V PWMI  H  –1 C PWMI = ------------------------------------------------------------------------------------------------------------------------------------------------------------------tPWMI  on  -----------------------t  V PWMI  L    V PWMI  L   PWMI  off  LN  --------------------------  V PWMI  L    -------------------------- – V PWMI  H   V PWMI  H   V PWMI  H  t PWMI  off  RPWMI = -------------------------------------------------------------- V PWMI  H  - C PWMI  LN  ------------------------ V PWMI  L   Data Sheet (6) (7) 12 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL PWMI Pin See Figure 10 for a typical external circuitry. Note: In case of junction temperatures above Tj(CRT) (Pos. 11.2.16) the device provides a temperature dependent current reduction feature as descirbed in Chapter 11.1.1. In case of output current reduction IIN_SET is reduced as well, which leads to increased turn on-times tPWMI(on), because the CPWMI is charged slower. The turn off-time tPWMI(off) remains the same. VBATT VS 10 kΩ GND EN Data Sheet Output control OUT Current adjustment GND IN_SET RSET Figure 10 Thermal protection D CD CPWM I RPWM I PWMI Internal supply LITIX™ Basic Typical circuit using internal PWM unit 13 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL PWMI Pin 6.3 Electrical Characteristics Internal Supply / EN / PWMI Pin Electrical Characteristics Internal Supply / EN / PWMI pin Unless otherwise specified: VS = 5.5 V to 40 V, Tj = -40°C to +150°C, RSET = 12 kΩ all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol 6.3.1 Current consumption, sleep mode IS(sleep) 6.3.2 Current consumption, active mode IS(on) Limit Values Min. Typ. Max. – 0.1 2 – – – 6.3.3 Current consumption, device disabled via ST – – – 6.3.4 – – – 6.3.5 Current consumption, device disabled via PWMI – – – Data Sheet – – – 14 1) VEN = 0.5 V Tj < 85 °C VS = 18 V VOUT = 3.6 V mA 2) VPWMI= 0.5 V IIN_SET = 0 µA Tj < 105 °C VS = 18 V VOUT = 3.6V VEN = 5.5 V VEN = 18 V 1) REN = 10 kΩ between VS and EN-pin mA 2) VS = 18 V Tj < 105 °C VST = 5 V VEN = 5.5 V VEN = 18 V 1) REN = 10 kΩ between VS and EN-pin mA 2) VS = 18 V Tj < 105 °C VIN_SET = 5 V VEN = 5.5 V VEN = 18 V 1) REN = 10 kΩ between VS and EN-pin mA 2) 1.4 0.7 1.4 IS(dis,PWMI) – – – µA 1.4 0.65 1.4 Current consumption, IS(dis,IN_SET) device disabled via IN_SET – – – Conditions 1.4 0.75 1.5 IS(dis,ST) – – – Unit 1.6 0.75 1.6 VS = 18 V Tj < 105 °C VPWMI= 3.4 V VEN = 5.5 V VEN = 18 V 1) REN = 10 kΩ between VS and EN-pin Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL PWMI Pin Electrical Characteristics Internal Supply / EN / PWMI pin (cont’d) Unless otherwise specified: VS = 5.5 V to 40 V, Tj = -40°C to +150°C, RSET = 12 kΩ all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. 6.3.6 Current consumption, active mode in fault detection condition with ST-pin unconnected – – – Current consumption, active mode in fault detection condition with ST-pin connected to GND Conditions mA 2) VS = 18 V Tj < 105 °C RSET = 12 kΩ VPWMI= 0.5 V VOUT = 18 V or 0 V VEN = 5.5 V VEN = 18 V 1) REN = 10 kΩ between VS and EN-pin mA 2) VS = 18 V Tj < 105 °C RSET = 12 kΩ VPWMI= 0.5 V VOUT = 18 V or 0 V VST = 0 V VEN = 5.5 V VEN = 18 V 1) REN = 10 kΩ between VS and EN-pin Max. IS(fault,STu) – – – 6.3.7 Typ. Unit 1.7 1.1 1.8 IS(fault,STG) – – – – – – 6.0 4.9 5.9 Power-on reset delay time tPOR – – 25 µs 1) 6.3.9 Required supply voltage for output activation VS(on) – – 4 V VEN = 5.5 V VOUT = 3 V IOUT = 50% IOUT(nom) 6.3.10 Required supply voltage for current control VS(CC) – – 5.2 V VEN = 5.5 V VOUT = 3.6 V IOUT ≥ 90% IOUT(nom) 6.3.11 EN turn on threshold VEN(on) – – 2.5 V – 6.3.12 EN turn off threshold VEN(off) 0.8 – – V – mA 1) VS = 4.5 V Tj < 105 °C VEN = 5.5 V mA Tj < 105 °C VS = 13.5 V, VEN = 5.5 V VS = 18 V, VEN = 5.5 V VS = VEN = 18 V 1) VS = 18 V, REN = 10 kΩ between VS and EN-pin 6.3.8 3) 6.3.13 EN input current during low supply voltage IEN(LS) 6.3.14 EN high input current IEN(H) Data Sheet – – – – – – – – – – 15 1.8 0.1 0.1 1.65 0.45 VS = VEN = 0 →13.5 V VOUT(nom) = 3.6 ± 0.3V IOUT = 80% IOUT(nom) Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL PWMI Pin Electrical Characteristics Internal Supply / EN / PWMI pin (cont’d) Unless otherwise specified: VS = 5.5 V to 40 V, Tj = -40°C to +150°C, RSET = 12 kΩ all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions 6.3.15 PWMI (active low) Switching low threshold (output on) VPWMI(L) 1.5 1.85 2.3 V 1)4) 6.3.16 PWMI(active low) Switching high threshold (output off) VPWMI(H) 2.45 2.85 3.2 V 1)4)5) VS = 8...18 V 6.3.17 ∆VPWMI PWMI Switching threshold difference VPWMI(H) - VPWMI(L) 0.75 1 1.10 V 1)4)5) VS = 8...18 V 6.3.18 PWMI (active low) Low input current with active channels (voltage 8 V Tj = 25...150 °C VS = VOUT (OL) or VOUTx = 0 V (SC) Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL Load Diagnosis Electrical Characteristics IN_SET pin and Load Diagnosis (cont’d) Unless otherwise specified: VS = 5.5 V to 40 V, Tj = -40°C to +150°C, RSET = 12 kΩ, all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions 10.3.3 IN_SET open load/short circuit current IIN_SET(OL/SC) 1.5 – 7.4 mA 1) 10.3.4 ST device turn on threshold (active low) in case of voltage applied from external (ST-pin acting as input) VST(L) 0.8 – – V – 10.3.5 ST device turn off threshold (active low) in case of voltage applied from external (ST-pin acting as input) VST(H) – – 2.5 V – 10.3.6 ST pull down current IST(PD) – – 15 µA 10.3.7 ST open load/short circuit VST(OL/SC) voltage (ST-pin acting as diagnosis output) 4 – 5.5 V 10.3.8 ST open load/short circuit IST(OL/SC) current (ST-pin acting as diagnosis output) 100 – 220 µA 10.3.9 D high threshold 2.45 2.85 3.2 V 10.3.10 D output current VD(th) ID 1 2 3 µA 10.3.11 OL detection voltage VPS(OL) = VS - VOUT VPS(OL) 0.2 – 0.4 V VEN = 5.5 V VST= 0.8 V 1) VS > 8 V Tj = 25...150 °C RST = 470 kΩ VS = VOUT (OL) or VOUT = 0 V (SC) 1) VS > 8 V Tj = 25...150 °C VST = 2.5 V VS = VOUT (OL) or VOUT = 0 V (SC) VS > 8 V VS > 8 V VD = 2 V VS > 8 V 10.3.12 Short circuit to GND detection threshold VOUT(SC) 0.8 – 1.4 V VS > 8 V 10.3.13 IN_SET diagnosis reset time tIN_SET(reset) – 5 20 µs 1) 10.3.14 SC detection current in case of unconnected STpin IOUT(SC,STu) 100 200 300 µA VS > 8 V VOUT= 0 V Data Sheet 27 VS > 8 V Tj = 25...150 °C VIN_SET = 4 V VS = VOUT (OL) or VOUT = 0 V (SC) VS > 8 V Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL Load Diagnosis Electrical Characteristics IN_SET pin and Load Diagnosis (cont’d) Unless otherwise specified: VS = 5.5 V to 40 V, Tj = -40°C to +150°C, RSET = 12 kΩ, all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions 10.3.15 SC detection current in case of ST-pin shorted to GND IOUT(SC,STG) 0.1 2 4.75 mA VS > 8 V VOUT= 0 V VST = 0 V 10.3.16 IN_SET activation current without turn on of output stage IIN_SET(act) 2 – 15 µA See Figure 15 1) Not subject to production test, specified by design Data Sheet 28 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL Power Stage 11 Power Stage The output stage is realized as high side current source with a current of 360 mA. During off state the leakage current at the output stage is minimized in order to prevent a slightly glowing LED. The maximum current of the channel is limited by the power dissipation and used PCB cooling areas (which results in the applications RthJA). For an operating current control loop the supply and output voltages according to the following parameters have to be considered: • • • Required supply voltage for current control VS(CC), Pos. 6.3.10 Voltage drop over output stage during current control VPS(CC), Pos. 11.2.6 Required output voltage for current control VOUT(CC), Pos. 11.2.7 11.1 Protection The device provides embedded protective functions, which are designed to prevent IC destruction under fault conditions described in this data sheet. Fault conditions are considered as “outside” normal operating range. Protective functions are neither designed for continuous nor for repetitive operation. 11.1.1 Over Load Behavior An over load detection circuit is integrated in the LITIX™ Basic IC. It is realized by a temperature monitoring of the output stage (OUT). As soon as the junction temperature exceeds the current reduction temperature threshold Tj(CRT) the output current will be reduced by the device by reducing the IN_SET reference voltage VIN_SET(ref). This feature avoids LED’s flickering during static output overload conditions. Furthermore, it protects LEDs against over temperature, which are mounted thermally close to the device. If the device temperature still increases, the output current decreases close to 0 A. As soon as the device cools down the output current rises again. IOU T V IN_ SET Tj (C R T) Figure 25 Tj Output current reduction at high temperature Note: This high temperature output current reduction is realized by reducing the IN_SET reference voltage voltage (Pos. 10.3.1). In case of very high power loss applied to the device and very high junction temperature the output current may drop down to IOUT = 0 mA, after a slight cooling down the current increases again. 11.1.2 Reverse Battery Protection The TLD1125EL has an integrated reverse battery protection feature. This feature protects the driver IC itself, but also connected LEDs. The output reverse current is limited to IOUTx(rev) by the reverse battery protection. Data Sheet 29 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL Power Stage Note: Due to the reverse battery protection a reverse protection diode for the light module may be obsolete. In case of high ISO-pulse requirements and only minor protecting components like capacitors a reverse protection diode may be reasonable. The external protection circuit needs to be verified in the application. 11.2 Electrical Characteristics Power Stage Electrical Characteristics Power Stage Unless otherwise specified: VS = 5.5 V to 18 V, Tj = -40°C to +150°C, VOUT = 3.6 V, all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. 11.2.1 Output leakage current Typ. Unit Conditions µA VEN = 5.5 V IIN_SET = 0 µA VOUT = 2.5 V Tj = 150 °C 1) Tj = 85 °C 1) Max. IOUT(leak) – – – – 21 9 11.2.2 Output leakage current in boost over battery setup -IOUT(leak,B2B) – – 150 µA VEN = 5.5 V IIN_SET = 0 µA VOUT = VS = 40 V 11.2.3 Reverse output current -IOUT(rev) – – 3 µA 1) 11.2.4 Output current accuracy limited temperature range kLT 1) 2092 1935 11.2.5 VS = -16 V Output load: LED with break down voltage < -0.6 V 2250 2250 Tj = 25...115 °C VS = 8...18 V VPS = 2 V RSET = 6...12 kΩ RSET = 30 kΩ 2408 2565 1) Output current accuracy over kALL temperature 2092 1935 2250 2250 2408 2565 Tj = -40...115 °C VS = 8...18 V VPS = 2 V RSET = 6...12 kΩ RSET = 30 kΩ 1) 11.2.6 Voltage drop over power stage during current control VPS(CC) = VS - VOUT VPS(CC) 0.75 – – V VS = 13.5 V RSET = 12 kΩ IOUT ≥ 90% of (kLT(typ)/RSET) 11.2.7 Required output voltage for current control VOUT(CC) 2.3 – – V 1) VS = 13.5 V RSET = 12 kΩ IOUT ≥ 90% of (kLT(typ)/RSET) 11.2.8 Maximum output current IOUT(max) 360 – – mA RSET = 4.7 kΩ The maximum output current is limited by the thermal conditions. Please refer to Pos. 4.3.1 Pos. 4.3.3 Data Sheet 30 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL Power Stage Electrical Characteristics Power Stage (cont’d) Unless otherwise specified: VS = 5.5 V to 18 V, Tj = -40°C to +150°C, VOUT = 3.6 V, all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions 2) 11.2.9 PWMI turn on time tON(PWMI) – – 15 µs 11.2.10 PWMI turn off time tOFF(PWMI) – – 10 µs 11.2.11 ST turn on time tON(ST) – – 15 µs 11.2.12 ST turn off time tOFF(ST) – – 10 µs 11.2.13 IN_SET turn on time tON(IN_SET) – – 15 µs VS = 13.5 V IIN_SET = 0 → 100 µA IOUT = 80% of (kLT(typ)/RSET) 11.2.14 IN_SET turn off time tOFF(IN_SET) – – 10 µs VS = 13.5 V IIN_SET = 100 → 0 µA IOUT = 20% of (kLT(typ)/RSET) 11.2.15 VS turn on time tON(VS) – – 20 µs 1) 4) VEN = 5.5 V RSET = 12 kΩ VS = 0 → 13.5 V IOUT = 80% of (kLT(typ)/RSET) 11.2.16 Current reduction temperature threshold Tj(CRT) – 140 – °C 1) – A 1) 11.2.17 Output current during IOUT(CRT) 85% of – current reduction at high (kLT(typ)/ temperature RSET) 1) Not subject to production test, specified by design VS = 13.5 V RSET = 12 kΩ PWMI → L IOUT = 80% of (kLT(typ)/RSET) 2) VS = 13.5 V RSET = 12 kΩ PWMI→ H IOUT = 20% of (kLT(typ)/RSET) 3) VS = 13.5 V RSET = 12 kΩ ST → L IOUT = 80% of (kLT(typ)/RSET) 3) VS = 13.5 V RSET = 12 kΩ ST →H IOUT = 20% of (kLT(typ)/RSET) IOUT = 95% of (kLT(typ)/RSET) RSET = 12 kΩ Tj = 150 °C 2) see also Figure 8 3) see also Figure 18 4) see also Figure 6 Data Sheet 31 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL Application Information 12 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. GND 4.7nF** ISO-Pulse protection circuit depending on requirements VS CVS =4.7nF BRAKE 10kΩ Cmod =2.2µF TAIL EN Internal supply PWMI Thermal protection Output control Current adjustment Status OUT * In case PWM via VS is performed ** For EMI improvement if required Figure 26 GND CST =100pF** 470kΩ* RSET CD TLD1125EL ST IN_SET RPWMI CPWMI D to other LITIX™ Basic Application Diagram Note: This is a very simplified example of an application circuit. In case of high ISO-pulse requirements a reverse protection diode may be used for LED protection. The function must be verified in the real application. 12.1 • Further Application Information For further information you may contact http://www.infineon.com/ Data Sheet 32 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL Package Outlines 13 Package Outlines 0.19 +0.06 0.08 C 0.15 M C A-B D 14x 0.64 ±0.25 1 8 1 7 0.2 M D 8x Bottom View 3 ±0.2 A 14 6 ±0.2 D Exposed Diepad B 0.1 C A-B 2x 14 7 8 2.65 ±0.2 0.25 ±0.05 2) 0.1 C D 8˚ MAX. C 0.65 3.9 ±0.11) 1.7 MAX. Stand Off (1.45) 0 ... 0.1 0.35 x 45˚ 4.9 ±0.11) Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Does not include dambar protrusion Dimensions in mm PG-SSOP-14-1,-2,-3-PO V02 Figure 27 PG-SSOP-14 Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). For further information on alternative packages, please visit our website: http://www.infineon.com/packages. Data Sheet 33 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL Revision History 14 Revision History Revision Date Changes 1.0 2013-08-08 Inital revision of data sheet 1.1 2015-03-19 Updated parameters KLT and KALL in the chapter Power Stage 1.2 2018-04-26 Updated to latest template 1.2 2018-04-26 Updated application drawing 1.2 2018-04-26 Updated package marking 1.2 2018-04-26 Updated package figure Data Sheet 34 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1125EL Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 5.1 5.2 5.3 5.3.1 5.3.2 EN Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 EN Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Internal Supply Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 EN Unused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 EN - Pull Up to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 EN - Direct Connection to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 6 6.1 6.2 6.3 PWMI Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PWM Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal PWM Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Internal Supply / EN / PWMI Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7.1 7.2 IN_SET Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Output Current Adjustment via RSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Smart Input Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 8 8.1 8.2 8.3 ST Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnosis Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnosis Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Disable Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 D Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 10 10.1 10.2 10.3 Load Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short Circuit to GND detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics IN_SET Pin and Load Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 23 25 26 11 11.1 11.1.1 11.1.2 11.2 Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Over Load Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse Battery Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 29 29 29 30 12 12.1 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 13 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 14 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 11 11 12 14 20 20 20 20 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Data Sheet 35 Rev. 1.2 2018-04-26 Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2018-04-26 Published by Infineon Technologies AG 81726 Munich, Germany © 2018 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference TLD1125EL IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
TLD1125ELXUMA1 价格&库存

很抱歉,暂时无法提供与“TLD1125ELXUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货