0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
L6384ED013TR

L6384ED013TR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SOIC8_150MIL

  • 描述:

    SOIC8 SMT 15.6V

  • 数据手册
  • 价格&库存
L6384ED013TR 数据手册
L6384E High voltage half-bridge driver Datasheet - production data Description DIP-8 SO-8 Features  High voltage rail up to 600 V  dV/dt immunity ± 50 V/nsec in full temperature range  Driver current capability – 400 mA source – 650 mA sink  Switching times 50/30 nsec rise/fall with 1 nF load  CMOS/TTL Schmitt trigger inputs with hysteresis and pull-down  Shutdown input  Deadtime setting  Undervoltage lockout  Integrated bootstrap diode  Clamping on VCC  Available in DIP-8/SO-8 packages Applications  Home appliances  Induction heating  HVAC The L6384E is a high voltage gate driver, manufactured with the BCD™ “offline” technology, and able to drive a half-bridge of power MOSFET or IGBT devices. The high-side (floating) section is able to work with voltage rail up to 600 V. Both device outputs can sink and source 650 mA and 400 mA respectively and cannot be simultaneously driven high thanks to single input configuration. Further prevention from outputs cross conduction is guaranteed by the deadtime function, tunable by the user through an external resistor connected to the DT/SD pin. The L6384E device has one input pin, one enable pin (DT/SD) and two output pins, and guarantees matched delays between low-side and high-side sections, thus simplifying device's high frequency operation. The logic inputs are CMOS/TTL compatible to ease the interfacing with controlling devices. The bootstrap diode is integrated inside the device, allowing a more compact and reliable solution. The L6384E features the UVLO protection and a voltage clamp on the VCC supply voltage. The voltage clamp is typically around 15.6 V and is useful in order to ensure a correct device functioning in cases where VCC supply voltage is ramped up too slowly or is subject to voltage drops. The device is available in a DIP-8 tube and SO-8 tube and tape and reel packaging options.  Industrial applications and drives  Motor drivers – DC, AC, PMDC and PMAC motors  Lighting applications  Factory automation  Power supply systems September 2015 This is information on a product in full production. DocID13862 Rev 3 1/18 www.st.com Contents L6384E Contents 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 4.1 AC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.2 DC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.3 Timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Bootstrap driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 CBOOT selection and charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 Typical characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 7.1 DIP-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 7.2 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 8 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2/18 DocID13862 Rev 3 L6384E Block diagram 1 Block diagram Figure 1. Block diagram H.V. VCC 2 8 VBOOT BOOTSTRAP DRIVER HVG DRIVER UV DETECTION R IN 1 OUT LEVEL SHIFTER Idt DT/SD DEAD TIME HVG 7 LOGIC VCC 3 S CBOOT LVG DRIVER VCC 6 5 LVG 4 GND LOAD Vthi D97IN518A DocID13862 Rev 3 3/18 18 Electrical data L6384E 2 Electrical data 2.1 Absolute maximum ratings Table 1. Absolute maximum ratings Symbol Parameter VOUT Output voltage VCC Supply voltage(1) Is VBOOT Value Unit -3 to VBOOT -18 V - 0.3 to 14.6 V 25 mA -1 to 618 V (1) Supply current Floating supply voltage Vhvg High-side gate output voltage -1 to VBOOT V Vlvg Low-side gate output voltage -0.3 to VCC +0.3 V Logic input voltage -0.3 to VCC +0.3 V Shutdown/deadtime voltage -0.3 to VCC +0.3 V Allowed output slew rate 50 V/ns Ptot Total power dissipation (Tj = 85 °C) 750 mW TJ Junction temperature 150 °C Ts Storage temperature -50 to 150 °C ESD Human body model 2 kV Vi VSD dVout/dt 1. The device has an internal clamping Zener between GND and the VCC pin, it must not be supplied by a low impedance voltage source. 2.2 Thermal data Table 2. Thermal data Symbol Rth(JA) 4/18 Parameter Thermal resistance junction to ambient DocID13862 Rev 3 SO-8 DIP-8 Unit 150 100 °C/W L6384E 2.3 Electrical data Recommended operating conditions Table 3. Recommended operating conditions Symbol Pin Parameter Test condition Min. VOUT 6 Output voltage (1) VBS(2) 8 Floating supply voltage (1) fsw VCC Tj Switching frequency 2 HVG, LVG load CL = 1 nF Supply voltage Junction temperature -45 Typ. Max. Unit 580 V 17 V 400 kHz Vclamp V 125 °C 1. If the condition VBOOT - VOUT < 18 V is guaranteed, VOUT can range from -3 to 580 V. 2. VBS = VBOOT - VOUT. DocID13862 Rev 3 5/18 18 Pin connection 3 L6384E Pin connection Figure 2. Pin connection (top view) */   7#005 7$$   )7( %54%   7065 (/%   -7( %*/ Table 4. Pin description No. Pin Type Function 1 IN I Logic input: it is in phase with HVG and in opposition of phase with LVG. It is compatible to VCC voltage. (Vil Max = 1.5 V, Vih Min = 3.6 V). 2 VCC P Supply input voltage: there is an internal clamp [typ. 15.6 V]. 3 DT/SD I High impedance pin with two functionalities. When pulled lower than Vdt (typ. 0.5 V), the device is shut down. A voltage higher than Vdt sets the deadtime between the high-side gate driver and low-side gate driver. The deadtime value can be set forcing a certain voltage level on the pin or connecting a resistor between the pin 3 and ground. Care must be taken to avoid below threshold spikes on the pin 3 that can cause undesired shutdown of the IC. For this reason the connection of the components between the pin 3 and ground has to be as short as possible. This pin can not be left floating for the same reason. The pin has not be pulled through a low impedance to VCC, because of the drop on the current source that feeds Rdt. The operative range is: Vdt … 270 K Idt, that allows a dt range of 0.4 - 3.1 s. 4 GND P Ground 5 LVG O Low-side driver output: the output stage can deliver 400 mA source and 650 mA sink (typ. values). The circuit guarantees 0.3 V max. on the pin (at Isink = 10 mA) with VCC > 3 V and lower than the turn-on threshold. This allows to omit the bleeder resistor connected between the gate and the source of the external MOSFET normally used to hold the pin low; the gate driver ensures low impedance also in SD conditions. 6 VOUT P High-side driver floating reference: layout care has to be taken to avoid below ground spikes on this pin. O High-side driver output: the output stage can deliver 400 mA source and 650 mA sink (typ. values). The circuit guarantees 0.3 V max. between this pin and VOUT (at Isink = 10 mA) with VCC > 3 V and lower than the turn-on threshold. This allows to omit the bleeder resistor connected between the gate and the source of the external MOSFET normally used to hold the pin low; the gate driver ensures low impedance also in SD conditions. P Bootstrap supply voltage: it is the high-side driver floating supply. The bootstrap capacitor connected between this pin and the pin 6 can be fed by an internal structure named “bootstrap driver” (a patented structure). This structure can replace the external bootstrap diode. 7 8 6/18 HVG VBOOT DocID13862 Rev 3 L6384E Electrical characteristics 4 Electrical characteristics 4.1 AC operation Table 5. AC operation electrical characteristics (VCC = 14.4 V; TJ = 25 °C) Symbol Pin ton 1 vs. 5, 7 High/low-side driver turn-on propagation delay tonsd 3 vs. 5, 7 Shutdown input propagation delay 1 vs. 5, 7 High/low-side driver turn-off propagation delay toff Parameter Test condition Min. Typ. Max. 200+ dt VOUT = 0 V Rdt= 47 k Unit ns 220 280 ns VOUT = 0 V Rdt = 47 k 250 300 ns VOUT = 0 V Rdt = 146 k 200 250 ns VOUT = 0 V Rdt = 270 k 170 200 ns tr 5, 7 Rise time CL = 1000 pF 50 ns tf 5, 7 Fall time CL = 1000 pF 30 ns 4.2 DC operation Table 6. DC operation electrical characteristics (VCC = 14.4 V; TJ = 25 °C) Symbol Pin Parameter Test condition Min. Typ. Max. Unit Is = 5 mA 14.6 15.6 16.6 V Supply voltage section Vclamp 2 Supply voltage clamping VCCth1 2 VCC UV turn-on threshold 11.5 12 12.5 V VCC UV turn-off threshold 9.5 10 10.5 V VCCth2 VCC UV hysteresis VCChys IQCCU 2 IQCC Undervoltage quiescent supply current 2 V VCC 11 V 150 A VIN = 0 380 500 A 17 V IN = HIGH 100 A Vhvg = VOUT = VBOOT = 600 V 10 A Quiescent current Bootstrapped supply voltage section VBOOT IQBS ILK Bootstrap supply voltage 8 Quiescent current High voltage leakage current Bootstrap driver Rdson on-resistance(1) VCC 12.5 V; IN = LOW 125  High/low-side driver Iso Isi 5, 7 Source short-circuit current VIN = Vih (tp < 10 s) 300 400 mA Sink short-circuit current VIN = Vil (tp < 10 s) 500 650 mA DocID13862 Rev 3 7/18 18 Electrical characteristics L6384E Table 6. DC operation electrical characteristics (continued) (VCC = 14.4 V; TJ = 25 °C) Symbol Pin Parameter Test condition Min. Typ. Max. Unit Logic inputs Low level logic threshold voltage Vil Vih 1.5 High level logic threshold voltage 1, 3 3.6 Iih High level logic input current VIN = 15 V Iil Low level logic input current VIN = 0 V Iref 3 Deadtime setting current dt 3 vs. 5, 7 Deadtime setting range(2) Vdt 3 V Rdt = 47 k Rdt = 146 k Rdt = 270 k V 50 0.4 Shutdown threshold 70 A 1 A 28 A 0.5 1.5 2.7 s s s 3.1 0.5 1. RDS(on) is tested in the following way:  V CC – V BOOT1  –  V CC – V BOOT2  R DSON = ----------------------------------------------------------------------------------------------I 1  V CC ,V BOOT1  – I 2  V CC ,V BOOT2  Where I1 is the pin 8 current when VBOOT = VBOOT1, I2 when VBOOT = VBOOT2. 2. The pin 3 is a high impedance pin. Therefore dt can be set also forcing a certain voltage V3 on this pin. The deadtime is the same obtained with an Rdt if it is: Rdt × Iref = V3. 4.3 Timing diagram Figure 3. Input/output timing diagram IN SD HVG LVG D99IN1017 8/18 DocID13862 Rev 3 V L6384E 5 Bootstrap driver Bootstrap driver A bootstrap circuitry is needed to supply the high voltage section. This function is normally accomplished by a high voltage fast recovery diode (Figure 4 a). In the L6384E device a patented integrated structure replaces the external diode. It is realized by a high voltage DMOS, driven synchronously with the low-side driver (LVG), with a diode in series, as shown in Figure 4 b. An internal charge pump (Figure 4 b) provides the DMOS driving voltage. The diode connected in series to the DMOS has been added to avoid undesirable turn-on. CBOOT selection and charging To choose the proper CBOOT value the external MOSFET can be seen as an equivalent capacitor. This capacitor CEXT is related to the MOSFET total gate charge: Equation 1 Q gate C EXT = --------------V gate The ratio between the capacitors CEXT and CBOOT is proportional to the cyclical voltage loss. It has to be: CBOOT>>>CEXT E.g.: if Qgate is 30 nC and Vgate is 10 V, CEXT is 3 nF. With CBOOT = 100 nF the drop would be 300 mV. If HVG has to be supplied for a long time, the CBOOT selection has to take into account also the leakage losses. E.g.: HVG steady state consumption is lower than 100 A, so if HVG TON is 5 ms, CBOOT has to supply 0.5 C to CEXT. This charge on a 1 F capacitor means a voltage drop of 0.5 V. The internal bootstrap driver gives great advantages: the external fast recovery diode can be avoided (it usually has a great leakage current). This structure can work only if VOUT is close to GND (or lower) and in the meanwhile the LVG is on. The charging time (Tcharge ) of the CBOOT is the time in which both conditions are fulfilled and it has to be long enough to charge the capacitor. The bootstrap driver introduces a voltage drop due to the DMOS RDSON (typical value: 125 ). At low frequency this drop can be neglected. Anyway increasing the frequency it must be taken in to account. The following equation is useful to compute the drop on the bootstrap DMOS: Equation 2 Q gate V drop = I ch arg e R dson  V drop = -------------------R dson T ch arg e where Qgate is the gate charge of the external power MOSFET, Rdson is the on-resistance of the bootstrap DMOS, and Tcharge is the charging time of the bootstrap capacitor. DocID13862 Rev 3 9/18 18 Bootstrap driver L6384E For example: using a power MOSFET with a total gate charge of 30 nC, the drop on the bootstrap DMOS is about 1 V, if the Tcharge is 5 s. In fact: Equation 3 30nC V drop = ---------------  125  0.8V 5s Vdrop has to be taken into account when the voltage drop on CBOOT is calculated: if this drop is too high, or the circuit topology doesn’t allow a sufficient charging time, an external diode can be used. Figure 4. Bootstrap driver DBOOT VS VBOOT VBOOT VS H.V. H.V. HVG HVG CBOOT VOUT TO LOAD TO LOAD LVG LVG a 10/18 CBOOT VOUT b DocID13862 Rev 3 D99IN1067 L6384E Typical characteristic Figure 5. Typical rise and fall times vs. load capacitance time (nsec) D99IN1015 250 Figure 6. Quiescent current vs. supply voltage Iq (μA) 104 D99IN1016 200 Tr 103 150 Tf 100 102 50 0 10 0 1 2 3 4 5 C (nF) For both high and low side buffers @25˚C Tamb Figure 7. Deadtime vs. resistance 0 4 6 8 10 14 VS(V) @ Vcc = 14.4V @ Vcc = 14.4V 300 2.0 Ton,Toff (ns) 2.5 Typ. 1.5 1.0 200 100 @ Rdt = 47kOhm Typ. Typ. @ Rdt = 270kOhm Typ. @ Rdt = 146kOhm 0.5 0.0 50 100 150 200 Rdt (k) 250 0 300 Figure 9. Deadtime vs. temperature -45 -25 0 25 50 Tj (°C) 75 100 125 Figure 10. Shutdown threshold vs. temperature 1 3 2.5 12 400 3.0 dt (s) 2 Figure 8. Driver propagation delay vs. temperature 3.5 Typ. R=270K 0.8 @ Vcc = 14.4V 2 1.5 @ Vcc = 14.4V Typ. R=146K Typ. R=47K 1 0.6 Vdt (V) dt (s) 6 Typical characteristic 0.4 Typ. 0.2 0.5 0 -45 -25 0 25 50 75 100 125 Tj (°C) 0 -45 -25 0 25 50 75 100 125 Tj (°C) DocID13862 Rev 3 11/18 18 Typical characteristic L6384E Figure 11. VCC UV turn-on vs. temperature Figure 12. Output source current vs. temperature 1000 15 800 Current (mA) Vccth1 (V) 14 13 12 Typ. 11 -45 -25 0 25 50 Tj (°C) 75 100 0 -45 125 -25 0 25 50 Tj (°C) 75 100 125 Figure 14. Output sink current vs. temperature 13 1000 12 800 @ Vcc = 14.4V Current (mA) Vccth2 (V) Figure 13. VCC UV turn-off vs. temperature 11 10 Typ. 400 200 10 Typ. 9 Typ. 600 400 200 8 0 -45 12/18 @ Vcc = 14.4V 600 -25 0 25 50 Tj (°C) 75 100 125 DocID13862 Rev 3 -45 -25 0 25 50 Tj (°C) 75 100 125 L6384E 7 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 7.1 DIP-8 package information Figure 15. DIP-8 package outline $0Y DocID13862 Rev 3 13/18 18 Package information L6384E Table 7. DIP-8 package mechanical data Dimensions (mm) Dimensions (inch) Symbol Min. A Typ. Min. 3.32 Typ. Max. 0.131 a1 0.51 0.020 B 1.15 1.65 0.045 0.065 b 0.356 0.55 0.014 0.022 b1 0.204 0.304 0.008 0.012 D E 10.92 7.95 9.75 0.430 0.313 0.384 e 2.54 0.100 e3 7.62 0.300 e4 7.62 0.300 F 6.6 0.260 I 5.08 0.200 L Z 14/18 Max. 3.18 3.81 1.52 DocID13862 Rev 3 0.125 0.150 0.060 L6384E 7.2 Package information SO-8 package information Figure 16. SO-8 package outline $0Y DocID13862 Rev 3 15/18 18 Package information L6384E Table 8. SO-8 package mechanical data Dimensions (mm) Dimensions (inch) Symbol Min. Typ. A Max. Min. Typ. 1.750 0.0689 A1 0.100 A2 1.250 b 0.280 0.480 0.0110 0.0189 c 0.170 0.230 0.0067 0.0091 (1) 4.800 4.900 5.000 0.1890 0.1929 0.1969 E 5.800 6.000 6.200 0.2283 0.2362 0.2441 E1(2) 3.800 3.900 4.000 0.1496 0.1535 0.1575 D e 0.250 Max. 0.0039 0.0098 0.0492 1.270 0.0500 h 0.250 0.500 0.0098 0.0197 L 0.400 1.270 0.0157 0.0500 L1 k ccc 1.040 0° 0.0409 8° 0.100 0° 8° 0.0039 1. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm in total (both sides). 2. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per side. 16/18 DocID13862 Rev 3 L6384E 8 Order codes Order codes Table 9. Order code 9 Order code Package Packaging L6384E DIP-8 Tube L6384ED SO-8 Tube L6384ED013TR SO-8 Tape and reel Revision history Table 10. Document revision history Date Revision 12-Oct-2007 1 First release 2 Added Section : Applications on page 1. Updated Section : Description on page 1 (replaced by new description). Updated Table 1: Device summary on page 1 (moved from page 15 to page 1, updated title). Updated Figure 1: Block diagram on page 3 (moved from page 1 to page 3, numbered and added title to Section 1: Block diagram on page 3). Updated Section 2.1: Absolute maximum ratings on page 4 (removed note below Table 2: Absolute maximum ratings). Updated Table 5: Pin description on page 5 (updated “Type” of several pins). Updated Table 7 on page 6 (updated “Max.” value of IQBS symbol). Updated Section : CBOOT selection and charging on page 8 (updated values of “E.g.: HVG”). Numbered Equation 1 on page 8, Equation 2 on page 8 and Equation 3 on page 9. Updated Section 7: Package information on page 12 [updated/added titles, updated ECOPACK text, reversed order of Figure 15 and Table 8, Figure 16 and Table 9 (numbered tables), removed 3D package figures, minor modifications]. Minor modifications throughout document. 3 Updated Table 1 on page 4 (added ESD parameter and value, minor modifications). Updated note 1. below Table 6 on page 7 (replaced VCBOOTx by VBOOTx). Moved Table 9 on page 17 (moved from page 1 to page 17, updated titles). Updated cross-references throughout document. Minor modifications throughout document. 20-Jun-2014 16-Sep-2015 Changes DocID13862 Rev 3 17/18 18 L6384E IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved 18/18 DocID13862 Rev 3
L6384ED013TR 价格&库存

很抱歉,暂时无法提供与“L6384ED013TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
L6384ED013TR
    •  国内价格
    • 1+13.54887
    • 10+13.04706
    • 100+11.54163
    • 500+11.24054

    库存:2

    L6384ED013TR
    •  国内价格 香港价格
    • 2500+6.256062500+0.75883
    • 5000+6.226835000+0.75528

    库存:0

    L6384ED013TR
    •  国内价格
    • 1+10.08720
    • 10+8.52120
    • 30+7.65720
    • 100+6.31800
    • 500+5.88600
    • 1000+5.69160

    库存:0