0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STSPIN820

STSPIN820

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    TFQFN24

  • 描述:

    IC MTR DRVR BIPLR 7-45V 24TFQFPN

  • 数据手册
  • 价格&库存
STSPIN820 数据手册
STSPIN820 Advanced 256 microsteps integrated motor driver with step-clock and direction interface Datasheet - production data Applications  3D printers  Medical equipment  Industrial 2D printers  Textile and sewing machines  CCTV, security and dome cameras  ATM and cash handling machines QFN 4 x 4 - 24 lead  Office and home automation  POS  Robotics Features  Operating voltage from 7 to 45 V Description  Maximum output current 1.5 Arms The STSPIN820 is a stepper motor driver which integrates, in a small QFN 4 x 4 mm package, both control logic and a low RDSon power stage.  RDSon HS + LS = 1 Ω typ.  Microstepping up to 1/256th of step  Current control with programmable OFF time  Current sensing based on external shunt resistor  Full protection set  Non-dissipative overcurrent protection  Short-circuit protection  Undervoltage lockout The integrated controller implements a PWM current control with fixed OFF time and a microstepping resolution up to 1/256th of the step. The device can be forced into a low consumption state. The device offers a complete set of protection features including overcurrent, overtemperature and short-circuit protection.  Thermal shutdown  Standby low consumption December 2017 This is information on a product in full production. DocID031065 Rev 2 1/29 www.st.com Contents STSPIN820 Contents 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 ESD protection ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.1 Power supply and standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.2 Microstepping sequencer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.3 PWM current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.4 Overcurrent and short-circuit protections . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.5 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.6 ESD protection strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6 Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7 Layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 8.1 TFQFPN 4 x 4 x 1.05- 24L package information . . . . . . . . . . . . . . . . . . . 26 9 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2/29 DocID031065 Rev 2 STSPIN820 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 ESD protection ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Step mode selection through MODEx inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Target reference and current direction according to sequencer value (full-step mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Target reference and current direction according to sequencer value (not full-step mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 ON, slow decay and fast decay states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Typical application values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 TFQFPN 4 x 4 x 1.05 - 24L package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 DocID031065 Rev 2 3/29 29 List of figures STSPIN820 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. 4/29 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 UVLO protection management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 MODEx, STCK and DIR timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 PWM current control sequence in mixed decay (DECAY = '0') . . . . . . . . . . . . . . . . . . . . . 17 OFF time regulation circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 OFF time vs ROFF value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Overcurrent and short-circuit protections management . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Disable time versus REN and CEN values (VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Overcurrent threshold versus temperature normalized at 25 °C . . . . . . . . . . . . . . . . . . . . 21 Thermal shutdown management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 ESD protection strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 PCB layout example (top layer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 TFQFPN 4 x 4 x 1.05- 24L package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 TFQFPN 4 x 4 x 1.05 - 24L suggested footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DocID031065 Rev 2 STSPIN820 1 Block diagram Block diagram Figure 1. Block diagram 74 67-0 075 74 45#:=3&4&5 %"$ 74 065" 0$=4$ &/= '"6-5 4&/4&" 7SFMFBTF  065" $0/530-0(*$ 45$,  0$=4$ 4&/4&" %*3 74 .0%& 4/4" %"$ .0%& .0%& 0$=4$ %&$": 4UFQQFS NPUPS 065# 4&/4&#  50'' 0TDJMMBUPS 0$=4$ 065# 4&/4&# 4/4# (/% 3&' ". DocID031065 Rev 2 5/29 29 Electrical data STSPIN820 2 Electrical data 2.1 Absolute maximum ratings Table 1. Absolute maximum ratings Symbol Parameter Test condition Value Unit VS Supply voltage - -0.3 to 48 V VIN Logic input voltage - -0.3 to 5.5 V VOUT,diff Differential voltage between VS, OUTx1, OUTx2 and SENSEx pins - up to 48 V VSENSE Sense pins voltage - -2 to 2 V Reference voltage input - -0.3 to 2 V - 1.5 Arms VREF IOUT,RMS Continuous power stage output current (each full-bridge) Tj Junction temperature - -40 to 150 °C TSTG Storage temperature - -55 to 150 °C 2.2 Recommended operating conditions Table 2. Recommended operating conditions Symbol Parameter Min. Typ. Max. Unit VS Supply voltage 7 - 45 V VIN Logic input voltage - - 5 V VSENSE Sense pins voltage -1 - +1 V Reference voltage input 0.1 - 1 V VREF 2.3 Thermal data Table 3. Thermal data Symbol RthJA Parameter Conditions (1) Value Unit 36.5 °C/W Junction to ambient thermal resistance Natural convection, according to JESD51-2A RthJCtop Junction to case thermal resistance (top side) Cold plate on top package, according to JESD51-12(1) 27.6 °C/W RthJCbot Junction to case thermal resistance (bottom side) Cold plate on exposed pad, according to JESD51-12(1) 5.9 °C/W RthJB Junction to board thermal resistance according to JESD51-8(1) JT JB Junction to top characterization Junction to board characterization 13.6 °C/W According to JESD51-2A(1) 1 °C/W According to JESD51-2A(1) 13.7 °C/W 1. Simulated on a 76.2 x 114.3 x 1.6 mm, with vias underneath the component, the 2s2p board as per the standard JEDEC (JESD51-7) in natural convection. 6/29 DocID031065 Rev 2 STSPIN820 2.4 Electrical data ESD protection ratings Table 4. ESD protection ratings Symbol HBM CDM MM Parameter Human body model Charge device model Machine model Conditions Class Value Unit Conforming to ANSI/ESDA/JEDEC JS001 H2 2 kV Conforming to ANSI/ESDA/JEDEC JS002 All pins C2a 500 V - 750 V NC 200 V Conforming to ANSI/ESDA/JEDEC JS002 Corner pins only (1, 6, 7, 12, 13, 18, 19, 24) Conforming to EIA/JESD22-A115-C DocID031065 Rev 2 7/29 29 Electrical characteristics 3 STSPIN820 Electrical characteristics Testing conditions: VS = 36 V, Tj = 25 °C, unless otherwise specified. Table 5. Electrical characteristics Symbol Parameter Test condition Min. Typ. Max. Unit General VSth(ON) VS turn-on threshold VS rising from 0 V - 6.0 6.5 V VSth(HYST) VS turn-off threshold hysteresis VS falling from 7 V - 0.4 - V No commutations EN = 0 RTOFF = 10 k - 2.3 2.75 No commutations EN = 1 RTOFF = 10 k - 2.7 3 0.8 IS VS supply current mA VSTBYL Standby low voltage - - - VSTBYH Standby high voltage - 2 - IS, STBY VS supply standby current STBY = '0' - - 45 VS = 21 V IOUT = 1 A - 1 1.3 VS = 21 V IOUT = 1 A Tj = 125 °C(1) - 1.4 1.6 OUTx = VS = 48 V - - 20 OUTx = -0.3 V -1 - - V V A Power stage RDSon HS+LS Total on resistance HS + LS  A IDSS Output leakage current VDF Freewheeling diode forward voltage ID = 1.5 A - 1 - V trise Rise time VS = 21 V - 120 - ns tfall Fall time VS = 21 V - 60 - ns VIH High logic level input voltage - 2 - VIL Low logic level input voltage - - - 0.8 V VOL FAULT low logic level output voltage IOL = 4 mA - - 0.3 V - - - 0.6 V STBY pull-down resistance - - 60 - k IEN Enable pull-down current - - 5 - µA tENd Enable input propagation delay From EN falling edge to OUTx high impedance - 400 - ns Logic IO VRELEASE FAULT open-drain release voltage RSTBY 8/29 DocID031065 Rev 2 V STSPIN820 Electrical characteristics Table 5. Electrical characteristics (continued) Symbol Parameter Test condition Min. Typ. Max. Unit 20 - - ns tMODE,su MODE inputs setup time (2) tMODE,ho MODE inputs hold time (2) 20 - - ns DIR input setup time (2) 20 - - ns DIR input hold time (2) 20 - - ns tSTCKH STCK input high time (2) 20 - - ns tSTCKL STCK input low time (2) 20 - - ns STCK input frequency (2) - - 4 MHz STCK propagation delay - - 100 - ns ROFF = 10 k - 13 - µs - 146 - µs -20% - +20% - tDIR,su tDIR,ho fSTCK tSTCK,d PWM current control tOFF tOFF tOFF,jitter Total OFF time range(1) OFF time precision Full temperature Total OFF time jittering - - ± 2% - - DECAY = '0' - 5/8 × tOFF - µs DECAY = '1' - tOFF - µs DECAY = '0' - 3/8 × tOFF - µs DECAY = '1' - 0 - µs tOFF,SLOW Slow decay time(3) tOFF,FAST ROFF = 160 k Fast decay time(3) Protections TjSD Thermal shutdown threshold - - 160 - °C TjSD,Hyst Thermal shutdown hysteresis - - 40 - °C Overcurrent protection threshold - - 3 3.5 A IOC 1. Based on characterization data on a limited number of samples, not tested during production. 2. See Figure 4 on page 13. 3. See Figure 5 on page 17. DocID031065 Rev 2 9/29 29 Pin connection 4 STSPIN820 Pin connection 50'' .0%& .0%& .0%& %*3 45$, Figure 2. Pin connection (top view)       3&'   %&$": (/%   &/='"6-5 (/%   45#:=3&4&5   4/4# 4&/4&"   4&/4&# 4&/4&"   4&/4&#       065" 74 74 065# 065# 4/4" 065" &1"% ". Note: The exposed pad must be connected to ground. Table 6. Pin description 10/29 No. Name Type Function 1 REF Analog input Reference voltage for the PWM current control circuitry 2, 3 EPAD GND Ground 4 SNSA Analog input Full-bridge A current regulator sense input 5 SENSEA1 Power output Sense output of the bridge A 6 SENSEA2 Power output Sense output of the bridge A 7 OUTA1 Power output Power bridge output side A1 8 OUTA2 Power output Power bridge output side A2 9 VS Supply Device supply voltage 10 VS Supply Device supply voltage 11 OUTB2 Power output Device ground Power bridge output side B2 DocID031065 Rev 2 STSPIN820 Pin connection Table 6. Pin description (continued) No. Name Type 12 OUTB1 Power output Power bridge output side B1 13 SENSEB2 Power output Sense output of the bridge B 14 SENSEB1 Power output Sense output of the bridge B 15 SNSB Analog input Full-bridge B current regulator sense input 16 STBY\RESET Logic input Standby\reset input. When forced low the device enters in low consumption mode. EN\FAULT Logic input\ open-drain output Logic input 5 V compliant with open-drain output. This is the power stage enable (when low, the power stage is turned off) and is forced low through the integrated open-drain MOSFET when a failure occurs. 17 Function 18 DECAY Logic input Decay mode selection input. High logic level sets slow decay mode; low logic level sets mixed decay mode (see Section 5.3 on page 16 for more details). 19 STCK Logic input Step clock input 20 DIR Logic input Direction input 21 MODE1 Logic input Step mode selection input 1 22 MODE2 Logic input Step mode selection input 2 23 MODE3 Logic input Step mode selection input 3 24 TOFF Analog input Internal oscillator frequency adjustment DocID031065 Rev 2 11/29 29 Functional description 5 STSPIN820 Functional description The STSPIN820 is a stepper motor driver integrating a microstepping sequencer (up to 1/256th step), two PWM current controllers and a power stage composed by two fullyprotected full-bridges. 5.1 Power supply and standby The device is supplied through the VS pins, the two pins must be at the same voltage. At power-up the power stage is disabled and the FAULT pin is forced low until the VS voltage rises above the VSth(ON) threshold. If the VS falls below the VSth(ON) - VSth(HYST) value the power stage is immediately disabled and the FAULT pins are forced low. Figure 3. UVLO protection management 74UI 0/ 74UI 0/ 74 UI ):45  74 *OUFSOBM0% SFMFBTFE '"6-5 108&3 TUBHF %*4"#-&% *OUFSOBM0% SFMFBTFE 0VUQVUTTUBUF BDDPSEJOHUP JOQVUTUBUVT 0VUQVUTTUBUF BDDPSEJOHUP JOQVUTUBUVT ". The device provides a low consumption mode which is set forcing the STBY\RESET input below the VSTBYL threshold. When the device is in standby status the power stage is disabled (outputs are in high impedance) and the supply to the integrated control circuitry is strongly reduced. When the device exits the standby status, all of the control circuitry is reset at power-up condition. 12/29 DocID031065 Rev 2 STSPIN820 5.2 Functional description Microstepping sequencer At each STCK rising edge, the sequencer of the device is increased (DIR input high) or decreased (DIR input low) of a module selected through the MODEx inputs as listed in Table 7. The sequencer is a 10-bit counter that sets the reference value of the PWM current controller and the direction of the current for both of the full-bridges. Note: The MODE1, MODE2 and MODE3 configuration can be changed in any time and it is immediately applied. Table 7. Step mode selection through MODEx inputs MODE3 MODE2 MODE1 Step mode Counter module (binary) 0 0 0 Full-step 0100000000 0 0 1 ½ step 0010000000 0 1 0 ¼ step 0001000000 0 1 1 1/8th 1 0 step 0000100000 0 1/16 step 0000010000 th 1 0 1 1/32nd step 0000001000 1 1 0 1/128th step 0000000010 1 th 0000000001 1 1 1/256 step Figure 4. MODEx, STCK and DIR timing diagram .0%& .0%& .0%& U .0%& TV U .0%& IP G 45$, U 45$,- U 45$,) 45$, U %*3 TV U %*3 IP %*3 ". DocID031065 Rev 2 13/29 29 Functional description STSPIN820 When the full-step mode is set, the reference value of the PWM current controllers and the direction of the currents are set as listed in Table 8. Table 8. Target reference and current direction according to sequencer value (full-step mode) Phase A Phase B Sequencer value Reference voltage Current direction Reference voltage Current direction 0 0 X X X X X X X X 100% × VREF A1 → A2 100% × VREF B1 → B2 0 1 X X X X X X X X 100% × VREF A1 → A2 100% × VREF B1 ← B2 1 0 X X X X X X X X 100% × VREF A1 ← A2 100% × VREF B1 ← B2 1 1 X X X X X X X X 100% × VREF A1 ← A2 100% × VREF B1 → B2 When the step mode is different from the full-step mode the values listed in Table 9 are used. Table 9. Target reference and current direction according to sequencer value (not full-step mode) Phase A Sequencer value Current direction Reference voltage Reference voltage - 100% × VREF B1 → B2 Sin (N/256 × π/2) × VREF A1 → A2 - B1 → B2 100% × VREF A1 → A2 Zero (power bridge disabled) - Sin (π/2 + N/256 × π/2) × VREF A1 → A2 Cos (π/2 + N/256 × π/2) × VREF B1 ← B2 - 100% × VREF B1 ← B2 Sin (N/256 × π/2) × VREF A1 ← A2 Cos (N/256 × π/2) × VREF B1 ← B2 100% × VREF A1 ← A2 Zero (power bridge disabled) - Sin (π/2 + N/256 × π/2) × VREF A1 ← A2 Cos (π/2 + N/256 × π/2) × VREF B1 → B2 Reference voltage 0 0 0 0 0 0 0 0 0 0 Zero (power bridge disabled) 0 0 N 0 1 0 0 0 0 0 0 0 0 0 1 N 1 0 0 0 0 0 0 0 0 0 Zero (power bridge disabled) 1 0 N 1 1 0 0 0 0 0 0 0 0 1 1 N Phase B The DECAY input determinates the behavior of the PWM current control as described in Section 5.3. When the EN\FAULT input is forced low the power stage is immediately disabled (all MOSFETs are turned off). The pin is also used as FAULT indication through the integrated open-drain MOSFET as described in Section 5.4 on page 19 and Section 5.5 on page 22. Table 10 shows the target reference and sequencer values for the 1/2-, 1/4- and 1/8-step operation. Higher microstepping resolutions follow the same pattern. The reset state (home state) for all stepping mode is entered at power-up or when the device exits the standby status. 14/29 DocID031065 Rev 2 STSPIN820 Functional description Table 10. Example Note: 1/2 step 1/4 step 1/8 step VREF phase A VREF phase B Sequencer value 1 1 1 0% 100% 0000000000 home state - - 2 19.509% 98.079% 0000100000 - 2 3 38.268% 92.388% 0001000000 - - 4 55.557% 83.147% 0001100000 2 3 5 70.711% 70.711% 0010000000 - - 6 83.147% 55.557% 0010100000 - 4 7 92.388% 38.268% 0011000000 - - 8 98.079% 19.509% 0011100000 3 5 9 100% 0% 0100000000 - - 10 98.079% -19.509% 0100100000 - 6 11 92.388% -38.268% 0101000000 - - 12 83.147% -55.557% 0101100000 4 7 13 70.711% -70.711% 0110000000 - - 14 55.557% -83.147% 0110100000 - 8 15 38.268% -92.388% 0111000000 - - 16 19.509% -98.079% 0111100000 5 9 17 0% -100% 1000000000 - - 18 -19.509% -98.079% 1000100000 - 10 19 -38.268% -92.388% 1001000000 - - 20 -55.557% -83.147% 1001100000 6 11 21 -70.711% -70.711% 1010000000 - - 22 -83.147% -55.557% 1010100000 - 12 23 -92.388% -38.268% 1011000000 - - 24 -98.079% -19.509% 1011100000 7 13 25 -100% 0% 1100000000 - - 26 -98.079% 19.509% 1100100000 - 14 27 -92.388% 38.268% 1101000000 - - 28 -83.147% 55.557% 1101100000 8 15 29 -70.711% 70.711% 1110000000 - - 30 -55.557% 83.147% 1110100000 - 16 31 -38.268% 92.388% 1111000000 - - 32 -19.509% 98.079% 1111100000 The positive number means that the output current is flowing from OUTx1 to OUTx2, vice versa the negative numbers mean that the current is flowing from OUTx2 to OUTx1. DocID031065 Rev 2 15/29 29 Functional description 5.3 STSPIN820 PWM current control The device implements two independent PWM current controllers, one for each full-bridge. The voltage of the sense pins (VSNSA and VSNSB) is compared to the respective internal reference voltage based on the sequencer value (seeTable 8 and Table 9). When VSNSX > VREFX the integrated comparator is triggered, the OFF time counter is started and the decay sequence is performed. The decay sequence starts turning on both the low sides of the full-bridge (slow decay), after the behavior of the PWM current control depends on the DECAY input:  When the DECAY input is low (mixed decay): the system switches from slow decay to quasi-synchronous fast decay (the sinking side of the bridge is put in high impedance) when the counter reaches a fixed threshold corresponding to a 5/8th of the total decay time (tOFF). As soon as the counter reaches the end of the count it is reset and the bridges return in the ON state.  When the DECAY input is high (slow decay only): the system stays in slow decay until the counter reaches the end of the count, then it is reset and the bridges returns in the ON state. The description of the ON, slow decay and fast decay status are listed in Table 11. Table 11. ON, slow decay and fast decay states Current direction(1) ON Slow decay Fast decay (quasi-synch.) Zero (power bridge disabled) HSX1 = OFF LSX1 = OFF HSX2 = OFF LSX2 = OFF HSX1 = OFF LSX1 = OFF HSX2 = OFF LSX2 = OFF HSX1 = OFF LSX1 = OFF HSX2 = OFF LSX2 = OFF X1 → X2 HSX1 = ON LSX1 = OFF HSX2 = OFF LSX2 = ON HSX1 = OFF LSX1 = ON HSX2 = OFF LSX2 = ON HSX1 = OFF LSX1 = ON HSX2 = OFF LSX2 = OFF X1 ← X2 HSX1 = OFF LSX1 = ON HSX2 = ON LSX2 = OFF HSX1 = OFF LSX1 = ON HSX2 = OFF LSX2 = ON HSX1 = OFF LSX1 = OFF HSX2 = OFF LSX2 = ON 1. The current direction is set according to Table 8 or Table 9. The reference voltage value, VREF, has to be selected according to the load current target value (peak value) and the sense resistors value. Equation 1 VREF = RSNS · ILOAD,peak 16/29 DocID031065 Rev 2 STSPIN820 Functional description The choice of the sense resistors value must take into account two main issues:  The sensing resistor dissipates energy and provides dangerous negative voltages on the SENSE pins during the current recirculation. For this reason the resistance of this component should be kept low (using multiple resistors in parallel will help obtaining the required power rating with standard resistors).  The lower is the RSNS value, the higher is the peak current error due to noise on the VREF pin and to the input offset of the current sense comparator: too small values of RSNS must be avoided. Figure 5. PWM current control sequence in mixed decay (DECAY = '0') 74 74 74 06 59 0659 0659 0659 0659 74 0659 0659 4& 4&/4&9 34&/4& 74 74 74 4& 4&/4&9 34&/4& 74 74 4&/4&9 34&/4& 74 0659 0659 4& 4&/4&9 34&/4& 0659 4&/4&9 34&/4& U 0'' 73&'9 3 4&/4& *QIBTF U %5 U %5 U 0'' 4 -0 8 U 0'' '"45 73&'9 74&/4&9 ". Note: When the voltage on the SNS pins exceeds the absolute ratings, fault condition is triggered and the EN\FAULT output is forced low. DocID031065 Rev 2 17/29 29 Functional description STSPIN820 TOFF adjustment The total OFF time is adjusted through an external resistor connected between the TOFF pin and ground as shown in Figure 6. Figure 6. OFF time regulation circuit 50'' 30'' ". The relation between the total OFF time and the external resistor value is shown in the graph of Figure 7. The value typically ranges from 10 µs to 150 µs. The recommended value for ROFF is in the range between 5 k and 180 k. Figure 7. OFF time vs ROFF value   0''UJNF         3 0'' The resulting OFF time depends on the decay mode selected: 18/29  DECAY = 'L', mixed decay ⇨ tOFF = tOFF,SLOW + tOFF,FAST  DECAY = 'H', slow decay ⇨ tOFF = tOFF,SLOW DocID031065 Rev 2 ". STSPIN820 5.4 Functional description Overcurrent and short-circuit protections The device embeds circuitry protecting each power output against the overload and shortcircuit conditions (short-circuit to ground, short-circuit to VS and short-circuit between outputs). When the overcurrent or the short-circuit protection is triggered the power stage is disabled and the EN\FAULT input is forced low through the integrated open-drain MOSFET discharging the external CEN capacitor (refer to Figure 8). The power stage is kept disabled and the open-drain MOSFET is kept ON until the EN\FAULT input falls below the VRELEASE threshold, then the CEN capacitor is charged through the external REN resistor. Figure 8. Overcurrent and short-circuit protections management .$6 %&7*$& '"6-5@.$6 73&-&"4& &/@.$6 &/='"6-5 &/ $ &/ 3&/ 7&/ 3&-&"4& '"6-5 0$=4$ 5)4% 0WFSDVSSFOU QSPUFDUJPO 7*) 7*73&-&"4& 1PXFS TUBHF &/"#-&% %*4"#-&% UEJTDIBSHF &/"#-&% U DIBSHF U 0$4% '"6-5 U %*4 ". The total disable time after an overcurrent event can be set sizing properly the external network connected to the EN\FAULT pin (refer to Figure 9). Equation 2 tDIS = tdischarge + tcharge DocID031065 Rev 2 19/29 29 Functional description STSPIN820 But tcharge is normally very higher than tdischarge we can consider only the second one contribution:  V DD – R EN  I PD  – V RELEASE t DIS  R EN  C EN  I n ----------------------------------------------------------------------------- V DD – R EN  I PD  – V IH Where VDD is the pull-up voltage of the REN resistor. Figure 9. Disable time versus REN and CEN values (VDD = 3.3 V)  3&/ 3&/L %JTBCMFUJNF< T> 3&/L 3&/ L             $ &/
STSPIN820 价格&库存

很抱歉,暂时无法提供与“STSPIN820”相匹配的价格&库存,您可以联系我们找货

免费人工找货