0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
VND830MSP-E

VND830MSP-E

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    POWERSO-10_7.5X9.4MM-EP

  • 描述:

    IC PWR DRIVER N-CHAN 1:1 PWRSO10

  • 数据手册
  • 价格&库存
VND830MSP-E 数据手册
® VND830MSP-E DOUBLE CHANNEL HIGH SIDE DRIVER Table 1. General Features Type VND830MSP-E (*) Per each channel Figure 1. Package IOUT 6 A (*) RDS(on) 60 mΩ (*) VCC 36 V CMOS COMPATIBLE INPUTS OPEN DRAIN STATUS OUTPUTS s ON STATE OPEN LOAD DETECTION s OFF STATE OPEN LOAD DETECTION s SHORTED LOAD PROTECTION s UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN s LOSS OF GROUND PROTECTION s VERY LOW STAND-BY CURRENT s s s s 10 1 PowerSO-10 ™ REVERSE BATTERY PROTECTION (**) IN COMPLIANCE WITH THE 2002/95/EC EUROPEAN DIRECTIVE Active current limitation combined with thermal shutdown and automatic restart protects the device against overload. The device detects open load condition both in on and off state. Output shorted to V CC is detected in the off state. The openload threshold is aimed at detecting the 5W/ 12V standard bulb as an openload fault in the on state. Device automatically turns off in case of ground pin disconnection. DESCRIPTION The VND830MSP-E is a monolithic device designed in STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active V CC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). Table 2. Order Codes Package PowerSO-10™ Note: (**) See application schematic at page 9 Tube VND830MSP-E Tape and Reel VND830MSPTR-E REV. 1 October 2004 1/20 VND830MSP-E Figure 2. Block Diagram VCC VCC CLAMP OVERVOLTAGE UNDERVOLTAGE GND INPUT1 STATUS1 CLAMP 1 OUTPUT1 DRIVER 1 CLAMP 2 CURRENT LIMITER 1 OVERTEMP. 1 LOGIC OPENLOAD ON 1 CURRENT LIMITER 2 DRIVER 2 OUTPUT2 INPUT2 OPENLOAD OFF 1 STATUS2 OPENLOAD OFF 2 OVERTEMP. 2 OPENLOAD ON 2 Table 3. Absolute Maximum Ratings Symbol VCC Parameter Value Unit DC Supply Voltage Reverse DC Supply Voltage DC Reverse Ground Pin Current DC Output Current Reverse DC Output Current DC Input Current DC Status Current Electrostatic Discharge R=1.5KΩ; C=100pF) - INPUT (Human Body Model: 41 - 0.3 - 200 Internally Limited -6 +/- 10 +/- 10 V V mA A A mA mA - VCC - IGND IOUT - IOUT IIN ISTAT 4000 4000 5000 5000 V V V V VESD - STATUS - OUTPUT - VCC Maximum Switching Energy EMAX Ptot Tj Tc Tstg (L=1.8mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=9A) Power Dissipation TC=25°C Junction Operating Temperature Case Operating Temperature Storage Temperature 100 73.5 Internally Limited - 40 to 150 - 55 to 150 mJ W °C °C °C 2/20 VND830MSP-E Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins GROUND INPUT 1 STATUS 1 STATUS 2 INPUT 2 6 7 8 9 10 11 VCC 5 4 3 2 1 OUTPUT OUTPUT N.C. OUTPUT OUTPUT 1 1 2 2 Connection / Pin Status Floating X To Ground N.C. X X Output X Input X Through 10KΩ resistor Figure 4. Current and Voltage Conventions IS IIN1 INPUT 1 VIN1 VSTAT1 ISTAT1 STATUS 1 IIN2 INPUT 2 VIN2 ISTAT2 STATUS 2 VSTAT2 GND IGND OUTPUT 2 IOUT2 VOUT2 OUTPUT 1 VOUT1 VCC IOUT1 VF1 (*) VCC (*) VFn = VCCn - VOUTn during reverse battery condition Table 4. Thermal Data Symbol Rthj-case Rthj-amb Parameter Thermal Resistance Junction-case Thermal Resistance Junction-ambient Value 1.7 51.7 (1) 37 (2) Unit °C/W °C/W Note: (1) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick). Horizontal mounting and no artificial air flow. Note: (2) When mounted on a standard single-sided FR-4 board with 6 cm2 of Cu (at least 35µm thick). Horizontal mounting and no artificial air flow. 3/20 VND830MSP-E ELECTRICAL CHARACTERISTICS (8VTTSD VCC=13V 5.5V < VCC < 36V IOUT=2A; L= 6mH Note: 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles. Table 11. Openload Detection Symbol IOL tDOL(on) Parameter Openload ON State Detection Threshold Openload ON State Test Conditions VIN=5V IOUT =0A VIN=0V 1.5 2.5 Min 0.6 Typ 0.9 Max 1.2 200 Unit A µs V µs Detection Delay Openload OFF State VOL Voltage Detection Threshold Openload Detection Delay TDOL(off) at Turn Off 3.5 1000 5/20 VND830MSP-E Figure 5. OPEN LOAD STATUS TIMING (with external pull-up) VOUT > VOL VINn IOUT< IOL Tj > TTSD VINn OVER TEMP STATUS TIMING VSTATn VSTATn tSDL tDOL(off) tDOL(on) tSDL Table 12. Truth Table CONDITIONS Normal Operation INPUT L H L H H L H L H L H L H L H OUTPUT L H L X X L L L L L L H H L H STATUS H H H (Tj < TTSD) H (Tj > TTSD) L H L X X H H L H H L Current Limitation Overtemperature Undervoltage Overvoltage Output Voltage > VOL Output Current < IOL Figure 6. Switching time Waveforms VOUTn 90% 80% dV OUT/dt(on) dV OUT/dt(off) 10% t VINn td(on) td(off) t 6/20 VND830MSP-E Table 13. Electrical Transient Requirements On V CC Pin ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E I -25 V +25 V -25 V +25 V -4 V +26.5 V II -50 V +50 V -50 V +50 V -5 V +46.5 V TEST LEVELS III -75 V +75 V -100 V +75 V -6 V +66.5 V TEST LEVELS RESULTS II III C C C C C C C C C C E E IV -100 V +100 V -150 V +100 V -7 V +86.5 V Delays and Impedance 2 ms 10 Ω 0.2 ms 10 Ω 0.1 µs 50 Ω 0.1 µs 50 Ω 100 ms, 0.01 Ω 400 ms, 2 Ω I C C C C C C IV C C C C C E CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device. 7/20 VND830MSP-E Figure 7. Waveforms NORMAL OPERATION INPUTn OUTPUT VOLTAGEn STATUSn UNDERVOLTAGE VCC VUSD INPUTn OUTPUT VOLTAGEn STATUSn undefined VUSDhyst OVERVOLTAGE VCCVOL VOL VCC>VOV OPEN LOAD without external pull-up INPUTn OUTPUT VOLTAGEn STATUSn OVERTEMPERATURE Tj INPUTn OUTPUT CURRENTn STATUSn TTSD TR 8/20 VND830MSP-E Figure 8. Application Schematic +5V +5V +5V VCC Rprot STATUS1 Dld µC Rprot INPUT1 OUTPUT1 Rprot STATUS2 Rprot INPUT2 GND OUTPUT2 RGND VGND DGND GND PROTECTION REVERSE BATTERY NETWORK AGAINST This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1kΩ) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND ≤ 600mV / IS(on)max. 2) RGND ≥ (− VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device’s datasheet. Power Dissipation in RGND (when VCC
VND830MSP-E 价格&库存

很抱歉,暂时无法提供与“VND830MSP-E”相匹配的价格&库存,您可以联系我们找货

免费人工找货