0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NCV8403DTRKG

NCV8403DTRKG

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TO252

  • 描述:

    BUFFER/INVERTER PERIPHL DRIVER

  • 数据手册
  • 价格&库存
NCV8403DTRKG 数据手册
NCV8403 Self-Protected Low Side Driver with Temperature and Current Limit 42 V, 14 A, Single N−Channel, SOT−223 NCV8403 is a three terminal protected Low-Side Smart Discrete device. The protection features include overcurrent, overtemperature, ESD and integrated Drain-to-Gate clamping for overvoltage protection. This device offers protection and is suitable for harsh automotive environments. Features VDSS (Clamped) 42 V http://onsemi.com ID MAX (Limited) 15 A Drain Overvoltage Protection RDS(on) TYP 53 mW @ 10 V • • • • • • • • • • • Short Circuit Protection Thermal Shutdown with Automatic Restart Over Voltage Protection Integrated Clamp for Inductive Switching ESD Protection dV/dt Robustness Analog Drive Capability (Logic Level Input) RoHs Compliant AEC-Q101 Qualified NCV Prefix for Automotive and Other Applications Requiring Site and Change Control These are Pb−Free Devices Gate Input ESD Protection Temperature Limit Current Limit Current Sense Source Typical Applications 4 1 2 3 MARKING DIAGRAM DRAIN 4 AYW 8403G G 1 2 3 SOURCE GATE DRAIN YWW V8403G • Switch a Variety of Resistive, Inductive and Capacitive Loads • Can Replace Electromechanical Relays and Discrete Circuits • Automotive / Industrial SOT−223 CASE 318E STYLE 3 4 12 3 DPAK CASE 369C A = Assembly Location Y = Year IL = Wafer Lot W, WW = Work Week G or G = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet. © Semiconductor Components Industries, LLC, 2010 February, 2010 − Rev. 4 1 Publication Order Number: NCV8403/D NCV8403 MAXIMUM RATINGS (TJ = 25°C unless otherwise noted) Rating Drain−to−Source Voltage Internally Clamped Gate−to−Source Voltage Drain Current Continuous Total Power Dissipation @ TA = 25°C (Note 1) @ TA = 25°C (Note 2) Thermal Resistance − SOT−223 Version Junction−to−Case Junction−to−Ambient (Note 1) Junction−to−Ambient (Note 2) Thermal Resistance − DPAK Version Junction−to−Case Junction−to−Ambient (Note 1) Junction−to−Ambient (Note 2) Single Pulse Inductive Load Switching Energy (VDD = 25 Vdc, VGS = 5.0 V, IL = 2.8 A, L = 120 mH, RG = 25 W) Load Dump Voltage (VGS = 0 and 10 V, RI = 2.0 W, RL = 4.5 W, td = 400 ms) Operating Junction Temperature Storage Temperature Symbol VDSS VGS ID PD Value 42 "14 Unit Vdc Vdc W Internally Limited 1.13 1.56 12 110 80 2.5 95 50 470 55 −40 to 150 −55 to 150 mJ V °C °C RqJC RqJA RqJA RqJC RqJA RqJA EAS VLD TJ Tstg °C/W Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Surface mounted onto minimum pad size (0.412″ square) FR4 PCB, 1 oz cu. 2. Mounted onto 1″ square pad size (1.127″ square) FR4 PCB, 1 oz cu. + ID DRAIN IG + GATE VDS VGS SOURCE − − Figure 1. Voltage and Current Convention http://onsemi.com 2 NCV8403 MOSFET ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted) Characteristic OFF CHARACTERISTICS Drain−to−Source Clamped Breakdown Voltage (VGS = 0 Vdc, ID = 250 mAdc) (VGS = 0 Vdc, ID = 250 mAdc, TJ = −40°C to 150°C) (Note 3) Zero Gate Voltage Drain Current (VDS = 32 Vdc, VGS = 0 Vdc) (VDS = 32 Vdc, VGS = 0 Vdc, TJ = 150°C) (Note 3) Gate Input Current (VGS = 5.0 Vdc, VDS = 0 Vdc) ON CHARACTERISTICS Gate Threshold Voltage (VDS = VGS, ID = 1.2 mAdc) Threshold Temperature Coefficient (Negative) Static Drain−to−Source On−Resistance (Note 4) (VGS = 10 Vdc, ID = 3.0 Adc, TJ @ 25°C) (VGS = 10 Vdc, ID = 3.0 Adc, TJ @ 150°C) (Note 3) Static Drain−to−Source On−Resistance (Note 4) (VGS = 5.0 Vdc, ID = 3.0 Adc, TJ @ 25°C) (VGS = 5.0 Vdc, ID = 3.0 Adc, TJ @ 150°C) (Note 3) Source−Drain Forward On Voltage (IS = 7.0 A, VGS = 0 V) SWITCHING CHARACTERISTICS (Note 3) Turn−ON Time (10% VIN to 90% ID) Turn−OFF Time (90% VIN to 10% ID) Turn−ON Time (10% VIN to 90% ID) Turn−OFF Time (90% VIN to 10% ID) Slew−Rate ON (20% VDS to 50% VDS) Slew−Rate OFF (80% VDS to 50% VDS) VIN = 0 V to 5 V, VDD = 25 V ID = 1.0 A, Ext RG = 2.5 W VIN = 0 V to 10 V, VDD = 25 V, ID = 1.0 A, Ext RG = 2.5 W Vin = 0 to 10 V, VDD = 12 V, RL = 4.7 W tON tOFF tON tOFF −dVDS/dtON dVDS/dtOFF 10 5.0 12 8.0 150 − 150 − 44 84 15 116 2.43 0.83 15 10 17 13 175 15 165 15 50 400 IGCL IGTL 0.1 0.6 0.45 1.5 4000 400 − − − − V V mA mA 20 15 22 18 200 − 185 − Adc Adc °C °C °C °C mA V/ms ms VGS(th) 1.0 − − − − − − 1.7 5.0 53 95 63 105 0.95 2.2 − 68 123 76 135 1.1 Vdc mV/°C mW V(BR)DSS 42 40 − − − 46 45 0.6 2.5 50 51 51 5.0 − 125 Vdc Vdc mAdc Symbol Min Typ Max Unit IDSS IGSS mAdc RDS(on) RDS(on) mW VSD V SELF PROTECTION CHARACTERISTICS (TJ = 25°C unless otherwise noted) (Note 5) VGS = 5.0 V, VDS = 10 V ILIM Current Limit VGS = 5.0 V, TJ = 150°C (Note 3) Current Limit Temperature Limit (Turn−off) Thermal Hysteresis Temperature Limit (Turn−off) Thermal Hysteresis GATE INPUT CHARACTERISTICS (Note 3) Device ON Gate Input Current Current Limit Gate Input Current Thermal Limit Fault Gate Input Current VGS = 5 V ID = 1.0 A VGS = 10 V ID = 1.0 A VGS = 5 V, VDS = 10 V VGS = 10 V, VDS = 10 V VGS = 5 V, VDS = 10 V VGS = 10 V, VDS = 10 V ESD ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted) (Note 3) Human Body Model (HBM) ESD Electro−Static Discharge Capability Electro−Static Discharge Capability Machine Model (MM) ESD 3. Not subject to production testing. 4. Pulse Test: Pulse Width = 300 ms, Duty Cycle = 2%. 5. Fault conditions are viewed as beyond the normal operating range of the part. IGON VGS = 10 V, VDS = 10 V VGS = 10 V, TJ = 150°C (Note 3) VGS = 5.0 Vdc (Note 3) VGS = 5.0 Vdc VGS = 10 Vdc (Note 3) VGS = 10 Vdc ILIM TLIM(off) DTLIM(on) TLIM(off) DTLIM(on) http://onsemi.com 3 NCV8403 TYPICAL PERFORMANCE CURVES 10 1000 TJstart = 150°C Emax (mJ) ILmax (A) TJstart = 25°C TJstart = 25°C TJstart = 150°C 1 10 L (mH) 100 100 10 L (mH) 100 Figure 2. Single Pulse Maximum Switch−off Current vs. Load Inductance 100 1000 Figure 3. Single−Pulse Maximum Switching Energy vs. Load Inductance 10 TJstart = 25°C Emax (mJ) ILmax (A) TJstart = 25°C TJstart = 150°C TJstart = 150°C 1 1 TIME IN CLAMP (ms) 10 100 1 TIME IN CLAMP (ms) 10 Figure 4. Single Pulse Maximum Inductive Switch−off Current vs. Time in Clamp 25 20 15 10 5 0 Ta = 25°C 3V 5 VGS = 2.5 V 0 1 2 VDS (V) 3 4 5 0 1.0 6V 7V 8V 9V 10 V 15 5V 4V 20 Figure 5. Single−Pulse Maximum Inductive Switching Energy vs. Time in Clamp VDS = 10 V −40°C 25°C ID (A) ID (A) 10 100°C 150°C 1.5 2.0 2.5 VGS (V) 3.0 3.5 4.0 Figure 6. On−state Output Characteristics Figure 7. Transfer Characteristics http://onsemi.com 4 NCV8403 TYPICAL PERFORMANCE CURVES 150 125 RDS(on) (mW) 100 100°C 75 50 25 −40°C 3 4 5 6 7 8 9 10 25°C 150°C ID = 3 A 100 90 80 RDS(on) (mW) 70 60 50 40 30 20 1 2 3 4 5 ID (A) 6 25°C, VGS = 5 V 25°C, VGS = 10 V −40°C, VGS = 5 V −40°C, VGS = 10 V 7 9 8 10 150°C, VGS = 5 V 150°C, VGS = 10 V 100°C, VGS = 5 V 100°C, VGS = 10 V VGS (V) Figure 8. RDS(on) vs. Gate−Source Voltage Figure 9. RDS(on) vs. Drain Current 2.00 ID = 5 A 1.75 NORMALIZED RDS(on) 25 −40°C 20 1.50 1.25 1.00 0.75 0.50 −40 −20 VGS = 10 V 10 ILIM (A) 15 25°C VGS = 5 V 100°C 150°C VDS = 10 V 0 20 40 60 T (°C) 80 100 120 140 5 5 6 7 VGS (V) 8 9 10 Figure 10. Normalized RDS(on) vs. Temperature 25 VGS = 10 V 20 IDSS (mA) ILIM (A) VGS = 5 V 15 VDS = 10 V Figure 11. Current Limit vs. Gate−Source Voltage 100 10 1 0.1 0.01 150°C VGS = 0 V 100°C 25°C −40°C 10 0.001 0.0001 5 −40 −20 0 20 40 60 80 100 120 140 0.00001 10 15 20 25 VDS (V) 30 35 40 TJ (°C) Figure 12. Current Limit vs. Junction Temperature Figure 13. Drain−to−Source Leakage Current http://onsemi.com 5 NCV8403 TYPICAL PERFORMANCE CURVES 1.2 1.1 1.0 0.9 0.8 0.7 0.6 −40 −20 0.6 0.5 VSD (V) ID = 1.2 mA VDS = VGS 1.0 0.9 0.8 0.7 −40°C 25°C NORMALIZED VGS(th) (V) 100°C 150°C VGS = 0 V 0 20 40 60 T (°C) 80 100 120 140 1 2 3 4 5 IS (A) 6 7 8 9 10 Figure 14. Normalized Threshold Voltage vs. Temperature 250 200 150 100 50 0 td(on) 3 4 5 6 7 8 9 VGS (V) VDD = 25 V ID = 5 A RG = 0 W DRAIN−SOURCE VOLTAGE SLOPE (V/ms) 3.0 2.5 2.0 1.5 1.0 0.5 0 Figure 15. Source−Drain Diode Forward Characteristics VDD = 25 V ID = 5 A RG = 0 W −dVDS/dt(on) TIME (ms) td(off) tf tr 10 dVDS/dt(off) 3 4 5 6 7 8 9 10 VGS (V) Figure 16. Resistive Load Switching Time vs. Gate−Source Voltage DRAIN−SOURCE VOLTAGE SLOPE (V/ms) 100 td(off), VGS = 10 V 75 TIME (ms) VDD = 25 V ID = 5 A 50 tf, VGS = 5 V td(on), VGS = 5 V td(on), VGS = 10 V td(off), VGS = 5 V tf, VGS = 10 V tr, VGS = 5 V tr, VGS = 10 V 2.50 2.25 2.00 1.75 1.50 1.25 1.00 0.75 0.50 0 Figure 17. Resistive Load Switching Drain−Source Voltage Slope vs. Gate−Source Voltage −dVDS/dt(on), VGS = 10 V VDD = 25 V ID = 5 A 25 dVDS/dt(off), VGS = 5 V dVDS/dt(off), VGS = 10 V −dVDS/dt(on), VGS = 5 V 500 1000 RG (W) 1500 2000 0 0 500 1000 RG (W) 1500 2000 Figure 18. Resistive Load Switching Time vs. Gate Resistance Figure 19. Drain−Source Voltage Slope during Turn On and Turn Off vs. Gate Resistance http://onsemi.com 6 NCV8403 TYPICAL PERFORMANCE CURVES 150 125 RqJA (°C/W) 100 PCB Cu thickness, 1.0 oz 75 PCB Cu thickness, 2.0 oz 50 25 50 PCB Cu thickness, 2.0 oz 0 100 200 300 400 500 600 700 800 25 0 100 200 300 400 500 600 700 800 RqJA (°C/W) 150 125 100 75 PCB Cu thickness, 1.0 oz COPPER HEAT SPREADER AREA (mm2) COPPER HEAT SPREADER AREA (mm2) Figure 20. RqJA vs. Copper Area − SOT−223 Figure 21. RqJA vs. Copper Area − DPAK 1000 100 10 1 0.1 0.01 Single Pulse 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 50% Duty Cycle 20% 10% 5% 2% 1% R(t) °C/W PULSE TIME (sec) Figure 22. Transient Thermal Resistance − SOT−223 Version 100 50% Duty Cycle 10 R(t) °C/W 20% 10% 5% 1 2% 1% 0.1 Single Pulse 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 0.01 PULSE TIME (sec) Figure 23. Transient Thermal Resistance − DPAK Version http://onsemi.com 7 NCV8403 TEST CIRCUITS AND WAVEFORMS RL VIN RG D G DUT S + VDD − IDS Figure 24. Resistive Load Switching Test Circuit 90% VIN 10% td(ON) tr td(OFF) tf 90% IDS 10% Figure 25. Resistive Load Switching Waveforms http://onsemi.com 8 NCV8403 TEST CIRCUITS AND WAVEFORMS L VDS VIN RG D G DUT S VDD + − tp IDS Figure 26. Inductive Load Switching Test Circuit 5V VIN Tav Tp V(BR)DSS Ipk 0V VDS VDD VDS(on) IDS 0 Figure 27. Inductive Load Switching Waveforms http://onsemi.com 9 NCV8403 ORDERING INFORMATION Device NCV8403STT1G NCV8403STT3G NCV8403DTRKG Package SOT−223 (Pb−Free) SOT−223 (Pb−Free) DPAK (Pb−Free) Shipping† 1000 / Tape & Reel 4000 / Tape & Reel 2500 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 10 NCV8403 PACKAGE DIMENSIONS SOT−223 (TO−261) CASE 318E−04 ISSUE M D b1 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. MILLIMETERS NOM MAX 1.63 1.75 0.06 0.10 0.75 0.89 3.06 3.20 0.29 0.35 6.50 6.70 3.50 3.70 2.30 2.40 0.94 1.05 1.75 2.00 7.00 7.30 1 0° − INCHES NOM 0.064 0.002 0.030 0.121 0.012 0.256 0.138 0.091 0.037 0.069 0.276 − 4 HE E 1 2 3 e1 b e A q L1 C DIM A A1 b b1 c D E e e1 L1 HE q MIN 1.50 0.02 0.60 2.90 0.24 6.30 3.30 2.20 0.85 1.50 6.70 0° MIN 0.060 0.001 0.024 0.115 0.009 0.249 0.130 0.087 0.033 0.060 0.264 0° MAX 0.068 0.004 0.035 0.126 0.014 0.263 0.145 0.094 0.041 0.078 0.287 1 0° 0.08 (0003) A1 STYLE 3: PIN 1. 2. 3. 4. GATE DRAIN SOURCE DRAIN SOLDERING FOOTPRINT* 3.8 0.15 2.0 0.079 2.3 0.091 2.3 0.091 6.3 0.248 2.0 0.079 mm 1.5 SCALE 6:1 inches 0.059 *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 11 NCV8403 PACKAGE DIMENSIONS DPAK (SINGLE GAUGE) CASE 369C−01 ISSUE B −T− B V R 4 SEATING PLANE NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. INCHES MIN MAX 0.235 0.245 0.250 0.265 0.086 0.094 0.027 0.035 0.018 0.023 0.037 0.045 0.180 BSC 0.034 0.040 0.018 0.023 0.102 0.114 0.090 BSC 0.180 0.215 0.025 0.040 0.020 −−− 0.035 0.050 0.155 −−− MILLIMETERS MIN MAX 5.97 6.22 6.35 6.73 2.19 2.38 0.69 0.88 0.46 0.58 0.94 1.14 4.58 BSC 0.87 1.01 0.46 0.58 2.60 2.89 2.29 BSC 4.57 5.45 0.63 1.01 0.51 −−− 0.89 1.27 3.93 −−− C E S A 1 2 3 Z U K F L D G 2 PL J H 0.13 (0.005) T DIM A B C D E F G H J K L R S U V Z M RECOMMENDED FOOTPRINT* 6.20 0.244 3.0 0.118 2.58 0.101 5.80 0.228 1.6 0.063 6.172 0.243 SCALE 3:1 mm inches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. HDPlus is a trademark of Semiconductor Components Industries, LLC (SCILLC) ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative http://onsemi.com 12 NCV8403/D
NCV8403DTRKG 价格&库存

很抱歉,暂时无法提供与“NCV8403DTRKG”相匹配的价格&库存,您可以联系我们找货

免费人工找货