0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BFP780H6327XTSA1

BFP780H6327XTSA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SC82A,SOT343

  • 描述:

    TRANSISTORRFNPNAMPSOT-343

  • 数据手册
  • 价格&库存
BFP780H6327XTSA1 数据手册
BFP780 High linearity RF medium power transistor Product description The BFP780 is a single stage high linearity and high gain driver amplifier based on NPN silicon germanium technology. Feature list • • • • High maximum RF input power PRFin,max = 20 dBm Minimum noise figure NFmin = 1.2 dB at 900 MHz, 5 V, 30 mA OIP3 = 34.5 dBm at 900 MHz, 5 V, 90 mA OP1dB = 23 dBm at 900 MHz, 5 V, 90 mA Product validation Qualified for industrial applications according to the relevant tests of JEDEC47/20/22. Potential applications • • • • Commercial and industrial wireless infrastructure ISM band medium power amplifiers and drivers Automated test equipment UHF television, CATV and DBS Device information Table 1 Part information Product name / Ordering code Package Pin configuration BFP780 / BFP780H6327XTSA1 SOT343 1=B 2=E Marking Pieces / Reel 3=C 4=E R1s 3000 Attention: ESD (Electrostatic discharge) sensitive device, observe handling precautions Datasheet www.infineon.com Please read the Important Notice and Warnings at the end of this document v4.0 2018-09-26 BFP780 High linearity RF medium power transistor Table of contents Table of contents Product description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Feature list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Device information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 4.1 4.2 4.3 4.4 Electrical performance in test fixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 DC parameter table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 AC parameter tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Characteristic DC diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Characteristic AC diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5 Package information SOT343 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Datasheet 2 v4.0 2018-09-26 BFP780 High linearity RF medium power transistor Absolute maximum ratings 1 Absolute maximum ratings Table 2 Absolute maximum ratings at TA = 25 °C (unless otherwise specified) Parameter Symbol Values Min. Collector emitter voltage VCE Collector base voltage VCB – Unit Note or test condition V TA = 25 °C TA = -40 °C Max. 6.1 5.1 15 – Instantaneous total collector current iC 240 mA DC + RF swing DC collector current IC 120 DC base current IB -1 5 RF input power PRFin – 20 dBm In- and output matched Dissipated power Pdiss 600 mW TS ≤ 93 °C 1), regard derating curve in Figure 1. Junction temperature TJ 150 °C – Operating case temperature TA -40 105 2) Storage temperature TStg -55 150 – Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the component. 1 2 TS is the soldering point temperature. TS is measured on the emitter lead at the soldering point of the PCB. At the same time regard TJ,max. Datasheet 3 v4.0 2018-09-26 BFP780 High linearity RF medium power transistor Recommended operating conditions 2 Recommended operating conditions The following table shows examples of recommended operating conditions. As long as maximum ratings are regarded, operation outside these conditions is permitted, but it may increases failure rate and reduces lifetime. For further information refer to the quality report available on the BFP780 product page. Table 3 Recommended operating conditions Collector current DC RF output Efficiency 4) Dissipated Thermal Junction 2) power power 3) power 5) resistance temperaof PCB 6) ture 7) TA [°C] IC [mA] PDC [mW] PRFout [mW] (dBm) η [%] Pdiss [mW] RthSA [K/W] TJ [°C] 55 90 450 200 (23) 45 250 120 110 Final stage 55 90 450 115 (20.5) 25 340 70 110 High TA 85 50 250 75 (19) 30 175 35 110 Maximum TA 105 20 100 45 (16.5) 45 55 35 110 Linear 55 50 250 20 (13) 8 230 120 110 Very linear 55 90 450 23 (13.5) 5 430 35 110 Operating Ambient mode temperature 1) Compression 1 2 3 4 5 6 7 Is the operating case temperature respectively of the heatsink. PDC = VCE* IC with VCE = 5 V. RF power delivered to the load, PRFout = η * PDC. Efficiency of the conversion from DC power to RF power, η = PRFout / PDC (collector efficiency). Pdiss = PDC - PRFout. The RF output power PRFout delivered to the load reduces the power Pdiss to be dissipated by the device. This means a good output match is recommended. RthSA is the thermal resistance of the PCB including heat sink, that is between the soldering point S and the ambient A. Regard the impact of RthSA on the junction temperature TJ, see below. The thermal design of the PCB, respectively RthSA, has to be adjusted to the intended operating mode. TJ = TA + Pdiss * RthJA. RthJA = RthJS + RthSA. RthJA is the thermal resistance between the transistor junction J and the ambient A. RthJS is the combined thermal resistance of die and package, which is 95 K/W for BFP780, see Chapter 3. Datasheet 4 v4.0 2018-09-26 BFP780 High linearity RF medium power transistor Thermal characteristics 3 Thermal characteristics Table 4 Thermal resistance Parameter Symbol Values Min. Junction - soldering point RthJS – Typ. 95 Unit Note or test condition K/W – Max. – 700 600 400 300 P diss,max [mW] 500 200 100 0 Figure 1 Note: Datasheet 0 25 50 75 T [°C] S 100 125 150 Absolute maximum power dissipation Pdiss,max = f(TS) In the horizontal part of the derating curve the maximum power dissipation is given by Pdiss,max ≈ VCE,max * IC,max. In this part, the junction temperature TJ is lower than TJ,max. In the declining slope, it is TJ = TJ,max. Pdiss,max has to be reduced according to the curve in order not to exceed TJ,max. It is TJ,max = TS + Pdiss,max * RthJS. 5 v4.0 2018-09-26 BFP780 High linearity RF medium power transistor Electrical performance in test fixture 4 Electrical performance in test fixture 4.1 DC parameter table Table 5 DC characteristics at TA = 25 °C Parameter Symbol Values Min. Collector emitter breakdown voltage Collector emitter leakage current V(BR)CEO ICES 6.1 – Typ. Unit Note or test condition Max. 6.6 – V IC = 1 mA, open base 1 0.1 40 1) 3 1) nA μA VCE = 8 V, VBE = 0 V, VCE = 18 V, VBE = 0 V, E-B short circuited Collector base leakage current ICBO 1 40 1) nA VCB = 8 V, IE = 0, open emitter Emitter base leakage current IEBO – 10 1) μA VEB = 0.5 V, IC = 0, open collector DC current gain hFE 160 230 85 4.2 AC parameter tables Table 6 General AC characteristics at TA = 25 °C Parameter Symbol Values Min. Note or test condition GHz VCE = 5 V, IC = 90 mA pF VCB = 5 V, VBE = 0 V, f = 1 MHz, emitter grounded Max. fT Collector base capacitance CCB 0.37 Collector emitter capacitance CCE 1.4 VCE = 5 V, VBE = 0 V, f = 1 MHz, base grounded Emitter base capacitance CEB 3.3 VEB = 0.5 V, VCB = 0 V, f = 1 MHz, collector grounded 1 20 Unit Transition frequency 2 – Typ. VCE = 5 V, IC = 90 mA, pulse measured 2) – Accuracy is not limited by the device but by the cycle time of the 100% test. Test duration 14 ms, duty cycle 46%. Regard that the current gain hFE depends on the junction temperature TJ and TJ amongst others from the thermal resistance RthSA of the PCB, see notes on Table 3. Hence the hFE specified in this data sheet must not be the same as in the application. It is recommended to apply circuit design techniques to make the collector current IC independent on the hFE production variation and temperature effects. Datasheet 6 v4.0 2018-09-26 BFP780 High linearity RF medium power transistor Electrical performance in test fixture Measurement setup for the AC characteristics shown in Table 7 to Table 10 is a test fixture with Bias-T’s and tuners to adjust the source and load impedance in a 50 Ω system. TA = 25 °C. VCC Output-Tuner Out ZL VBB C E Bias-T DUT Input-Tuner In E B ZS Bias-T Figure 2 BFP780 testing circuit Table 7 AC characteristics, VCE = 5 V, f = 900 MHz Parameter Symbol Values Min. Unit Typ. Max. Power gain Maximum power gain Transducer gain Gms |S21|2 27 21.5 IC = 90 mA Minimum noise figure Minimum noise figure NFmin 1.2 IC = 30 mA Linearity 1 dB compression point at output 3rd order intercept point at output Table 8 – Note or test condition – OP1dB OIP3 dB dBm ZL = ZL,opt(Pout), IC = 90 mA Unit Note or test condition 23 34.5 AC characteristics, VCE = 5 V, f = 1.8 GHz Parameter Symbol Values Min. Typ. Power gain Maximum power gain Transducer gain Gms |S21|2 22 15 IC = 90 mA Minimum noise figure Minimum noise figure NFmin 1.4 IC = 30 mA Linearity 1 dB compression point at output 3rd order intercept point at output Datasheet – Max. – dB dBm OP1dB OIP3 22 34 7 ZL = ZL,opt(Pout), IC = 90 mA v4.0 2018-09-26 BFP780 High linearity RF medium power transistor Electrical performance in test fixture Table 9 AC characteristics, VCE = 5 V, f = 2.6 GHz Parameter Symbol Values Min. Unit Typ. Max. Power gain Maximum power gain Transducer gain Gma |S21|2 18 12 IC = 90 mA Minimum noise figure Minimum noise figure NFmin 1.7 IC = 30 mA Linearity 1 dB compression point at output 3rd order intercept point at output Table 10 – Note or test condition – OP1dB OIP3 dB dBm ZL = ZL,opt(Pout), IC = 90 mA Unit Note or test condition 22 34 AC characteristics, VCE = 5 V, f = 3.5 GHz Parameter Symbol Values Min. Typ. Power gain Maximum power gain Transducer gain Gma |S21|2 15 8.5 IC = 90 mA Minimum noise figure Minimum noise figure NFmin 2.4 IC = 30 mA Linearity 1 dB compression point at output 3rd order intercept point at output Datasheet – Max. – dB dBm OP1dB OIP3 22 33.5 8 ZL = ZL,opt(Pout), IC = 90 mA v4.0 2018-09-26 BFP780 High linearity RF medium power transistor Electrical performance in test fixture 4.3 Characteristic DC diagrams 180 160 140 1.1mA 1mA 0.9mA 0.8mA 0.7mA 0.6mA 0.5mA C I [mA] 120 100 80 60 0.4mA 40 0.2mA 0.3mA 0.1mA 20 0 0mA 0 1 2 3 4 V CE Figure 3 Note: 5 6 7 [V] Collector current vs. collector emitter voltage IC = f(VCE), IB = parameter Refer to absolute maximum ratings for IC, VCE and Pdiss. 3 hFE 10 2 10 1 10 0.1 1 10 Ic [mA] Figure 4 DC Current gain hFE = f(IC), VCE = 5 V Datasheet 9 100 1000 v4.0 2018-09-26 BFP780 High linearity RF medium power transistor Electrical performance in test fixture 24 C 22 B RBE . 18 16 V ( BR)CER [V] 20 14 E 12 10 8 6 2 10 3 10 4 5 10 10 R 6 10 7 10 [Ω] BE Figure 5 Note: Datasheet Collector emitter breakdown voltage V(BR)CER = f(RBE) The above figure shows the collector-emitter breakdown voltage V(BR)CER with a resistor RBE between base and emitter. Only for very high RBE values ("open base") the breakdown voltage V(BR)CER is as low as V(BR)CEO (here 6.6 V). With decreasing RBE values V(BR)CER increases, e.g. at RBE = 10 kΩ to V(BR)CEO = 10 V. In the application the biasing base resistance together with block capacitors take over the function of RBE and allows the RF voltage amplitude to swing up to voltages much higher than V(BR)CEO, without clipping. Due to this effect the transistor can be biased at VCE = 5 V and still high RF output powers achieved, see the OP1dB values reported in Chapter 4.2. 10 v4.0 2018-09-26 BFP780 High linearity RF medium power transistor Electrical performance in test fixture 4.4 Characteristic AC diagrams 25 2.00V 3.00V 4.00V 5.00V fT [GHz] 20 15 10 5 0 0 20 40 60 80 I [mA] 100 120 140 C Figure 6 Transition frequency fT = f(IC), VCE = parameter 800 700 CCB [fF] 600 2.00V 500 3.00V 4.00V 400 5.00V 300 200 Figure 7 Datasheet 0 20 40 60 80 IC [mA] 100 120 140 Collector base capacitance CCB = f(IC), f = 1 GHz, VCB = parameter 11 v4.0 2018-09-26 BFP780 High linearity RF medium power transistor Electrical performance in test fixture 40 35 G ms 30 G [dB] 25 20 Gma 15 10 |S21|2 5 0 Figure 8 0 1 2 3 f [GHz] 4 5 6 Gain Gms, Gma, IS21I2 = f(f), VCE = 5 V, IC = 90 mA 32 0.45GHz 30 28 0.90GHz Gmax [dB] 26 24 22 1.80GHz 20 18 2.60GHz 16 3.50GHz 14 12 0 20 40 60 80 I [mA] 100 120 140 C Figure 9 Datasheet Maximum power gain Gmax = f(IC), VCE = 5 V, f = parameter 12 v4.0 2018-09-26 BFP780 High linearity RF medium power transistor Electrical performance in test fixture 32 0.45GHz 30 28 0.90GHz 26 G [dB] 24 22 1.80GHz 20 18 2.60GHz 16 3.50GHz 14 12 0 1 2 3 V Figure 10 CE 4 5 6 [V] Maximum power gain Gmax = f(VCE), IC = 90 mA, f = parameter 1 1.5 0.5 0.4 5.0 6.0 7.0 8.0 2 9.0 10.0 11.0 12.0 4.0 0.3 3 4 3.0 0.2 5 0.03 to 12 GHz 2.0 0.1 10 0.1 0 0.2 0.3 0.4 0.5 1 1.5 2 3 4 5 1.0 −0.1 0.03 −10 0.03 −0.2 −5 −4 −0.3 −3 −0.4 −0.5 −2 −1.5 −1 Figure 11 Datasheet 90mA 30mA Input reflection coefficient S11 = f(f), VCE = 5 V, IC = parameter 13 v4.0 2018-09-26 BFP780 High linearity RF medium power transistor Electrical performance in test fixture 1 1.5 0.5 2 0.4 8.0 9.0 10.0 11.0 12.0 3 7.0 0.3 6.0 0.2 4 5 5.0 0.03 to 12 GHz 4.0 0.1 10 3.0 0.1 0 0.2 0.3 0.4 0.5 1 2.0 1.5 2 3 4 5 1.0 0.03 −0.1 −0.2 −10 −5 −4 −0.3 −3 −0.4 −0.5 −2 90mA −1.5 −1 Figure 12 30mA Output reflection coefficient S22 = f(f), VCE = 5 V, IC = parameter 1 1.5 0.5 2 0.4 3 0.3 4 0.2 5 0.45 to 4 GHz 0.1 10 0.1 0 0.2 0.3 0.4 0.5 0.9 0.5 2 3 4 5 2.4 2.4 −0.2 1.5 1.5 1.8 0.9 1.5 1.8 −0.1 0.5 1 −10 3.0 3.0 3.5 −5 −4 3.5 −0.3 −3 −0.4 −0.5 −2 −1.5 −1 Figure 13 Datasheet 30mA 90mA Source impedance for minimum noise figure ZS,opt = f(f), VCE = 5 V, IC = parameter 14 v4.0 2018-09-26 BFP780 High linearity RF medium power transistor Electrical performance in test fixture 4 3.5 3 NFmin [dB] 2.5 2 1.5 I = 90mA C IC = 30mA 1 0.5 0 Figure 14 0 0.5 1 1.5 2 f [GHz] 2.5 3 3.5 4 Noise figure NFmin = f(f), VCE = 5 V, ZS = ZS,opt, IC = parameter 4 3.5 3 2 NF min [dB] 2.5 1.5 f = 3.5GHz f = 2.6GHz f = 1.8GHz f = 1.5GHz f = 0.9GHz f = 0.45GHz 1 0.5 0 0 20 40 60 80 100 IC [mA] Figure 15 Datasheet Noise figure NFmin = f(IC), VCE = 5 V, ZS = ZS,opt, f = parameter 15 v4.0 2018-09-26 BFP780 High linearity RF medium power transistor Electrical performance in test fixture 6 5 [dB] 4 NF 50 3 f = 3.5GHz f = 2.6GHz f = 1.8GHz f = 1.5GHz f = 0.9GHz f = 0.45GHz 2 1 0 0 20 40 60 80 100 I [mA] C Figure 16 Noise figure NF50 = f(IC), VCE = 5 V, ZS = 50 Ω, f = parameter 1 1.5 0.5 2 15 0.4 17.5 3 18.8 0.3 4 19.6 0.2 0.1 0.1 0.2 0.3 0.4 0.5 10 22.6 23 0 5 1 1.5 21.7 2 20.5 3 4 5 −0.1 −10 −0.2 −5 −4 −0.3 −3 −0.4 −0.5 −2 −1.5 −1 Figure 17 Datasheet Load pull contour OP1dB [dBm], VCE = 5 V, IC = 90 mA, f = 900 MHz 16 v4.0 2018-09-26 BFP780 High linearity RF medium power transistor Electrical performance in test fixture 1 1.5 0.5 20.5 0.4 2 25 0.3 27.3 3 29.5 0.2 4 5 31 32.5 0.1 0.1 0 0.2 0.3 0.4 0.5 1 34 1.5 10 2 3 4 5 34.7 −0.1 −10 −0.2 −5 −4 −0.3 −3 −0.4 −0.5 −2 −1.5 −1 Load pull contour OIP3 [dBm], VCE = 5 V, IC = 90 mA, f = 900 MHz 85 100 IP1dB Gain [dB], Pout [dBm], PAE [%] C 80 B R1 R2 80 IC E 60 PAE 40 75 IC [mA] Figure 18 70 Pout 20 0 −20 Gain −15 −10 −5 P [dBm] 0 5 65 60 10 in Figure 19 Note: Datasheet Pout, Gain, IC, PAE = f(Pin), VCE = 5 V, f = 900 MHz, R1 = 270 Ω, R2 = 8 kΩ, ZL = ZL,opt(Pout) The curves shown in this chapter have been generated using typical devices but shall not be understood as a guarantee that all devices have identical characteristic curves. TA = 25 °C. 17 v4.0 2018-09-26 BFP780 High linearity RF medium power transistor Package information SOT343 0.9 ±0.1 Package information SOT343 1.25 ±0.1 0.15 -0.05 +0.10 A 0.1 0.1 MIN. 0.1 2.1 ±0.1 A 2 1 3x +0.10 0.3 -0.05 0.6 -0.05 +0.10 1.3 2 ±0.2 0.1 3 4 0.15 0.2 0.1 MAX. 5 MOLD FLAS H, P ROTRUS ION OR GATE BURRS OF 0.2 MM MAXIMUM P ER S IDE ARE NOT INCLUDED ALL DIMENS IONS ARE IN UNITS MM THE DRAWING IS IN COMP LIANCE WITH IS O 128 & P ROJ ECTION METHOD 1 [ ] Figure 20 Package outline Figure 21 Foot print TYP E CODE NOTE OF MANUFACTURER MONTH YEAR Figure 22 Marking layout example 4 0.2 2.3 8 2 P IN 1 INDEX MARKING 2.15 ALL DIMENS IONS ARE IN UNITS MM THE DRAWING IS IN COMP LIANCE WITH IS O 128 & P ROJ ECTION METHOD 1 [ Figure 23 Datasheet 1.1 ] Tape dimensions 18 v4.0 2018-09-26 BFP780 High linearity RF medium power transistor Revision history Revision history Document version Date of release Description of changes 4.0 2018-09-26 New datasheet layout. Datasheet 19 v4.0 2018-09-26 Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2018-09-26 Published by Infineon Technologies AG 81726 Munich, Germany © 2018 Infineon Technologies AG All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference IFX-ebx1468299694130 IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”) . With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury
BFP780H6327XTSA1 价格&库存

很抱歉,暂时无法提供与“BFP780H6327XTSA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货